Publications by authors named "Soumili Daripa"

This Research Article demonstrates a very simple approach of a moisture-induced power-generating phenomenon using water-soluble rod-coil conjugated block copolymer (poly(3-hexythiophene)--poly(4-styrenesulfonic acid) (P3HT--PSSA)-modified reduced graphene oxide. The block copolymer-modified reduced graphene oxide (BCP-RGO) was prepared by noncovalent surface functionalization cum in situ reduction of graphene oxide. A simple device made from BCP-RGO can generate voltage upon exposure to water vapor or under different humidity conditions.

View Article and Find Full Text PDF

Here, we have reported micellar aggregations of an amphiphilic block copolymer in mixed solvent and their subsequent use as a template for the fabrication of a very dense, tunable metal nanoparticle-decorated surface for SERS and flexible dip catalysis applications. A silver nanoparticle-immobilized layer on silicon substrates shows excellent SERS (surface-enhanced Raman scattering)-based sensing performance for model analyte rhodamine B up to 10 M concentration with a well-defined calibration curve. Furthermore, a facile approach to the preparation of metal NP-immobilized BCP membranes as efficient dip catalyst for two model reactions (the reduction of nitrophenol and the Suzuki-Miyaura reaction of iodobenzene or 2,7-diiodofluorene with phenyl boronic acid) is also demonstrated.

View Article and Find Full Text PDF

Here, we have discussed the preparation of a highly solution processable graphene from a novel supramolecular assembly consisting of block copolymer polystyrene--poly(4-vinylpyridine) (PS--P4VP) and pyrenebutyric acid (PBA)-modified reduced graphene oxide (RGO). The PBA molecules anchored on the graphene surface form supramolecules with PS--P4VP through H-bonding between the carboxylic acid group of 1-pyrenebutyric acid and the pyridine ring of P4VP. The formation of a supramolecular assembly results in a highly stable solution of reduced graphene oxide in common organic solvents, such as 1,4-dioxane and chloroform.

View Article and Find Full Text PDF