Publications by authors named "Soujanya Kona"

Endothelial cell (EC) activation and inflammation is a key step in the initiation and progression of many cardiovascular diseases. Targeted delivery of therapeutic reagents to inflamed EC using nanoparticles is challenging as nanoparticles do not arrest on EC efficiently under high shear stress. In this study, we developed a novel polymeric platelet-mimicking nanoparticle for strong particle adhesion onto ECs and enhanced particle internalization by ECs.

View Article and Find Full Text PDF

The objective of this study was to investigate the physical characteristics of poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) coated with two surfactants, Pluronic or the commonly used polyvinyl alcohol (PVA); and determine their in vitro efficiency as drug carriers for cancer therapy. Free surfactant cytotoxicity results indicated that Pluronic F127 (PF127) was most cytocompatible among the Pluronics tested and hence chosen for coating PLGA NPs for further studies. Release studies using doxorubicin (DOX) as a drug model showed sustained release of DOX from both PVA- and PF127-coated PLGA NPs (PLGA-PVA and PLGA-PF127, respectively) over 28 days.

View Article and Find Full Text PDF

Targeted delivery of therapeutic agents to prevent smooth muscle cell (SMC) proliferation is important in averting restenosis (a narrowing of blood vessels). Since platelet derived growth factor (PDGF) receptors are over-expressed in proliferating SMCs after injury from cardiovascular interventions, such as angioplasty and stent implantation, our hypothesis is that conjugation of PDGF-BB (platelet-derived growth factor BB (homodimer)) peptides to biodegradable poly (D,L-lactic-co-glycolide) (PLGA) nanoparticles (NPs) would exhibit an increased uptake of these NPs by proliferating SMCs. In this study, poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles containing dexamethasone were formulated and conjugated with PDGF-BB peptides.

View Article and Find Full Text PDF

This research aims to develop targeted nanoparticles as drug carriers to the injured arterial wall under fluid shear stress by mimicking the natural binding ability of platelets via interactions of glycoprotein Ib-alpha (GPIbα) of platelets with P-selectin of damaged endothelial cells (ECs) and/or with von Willebrand factor (vWF) of the subendothelium. Drug-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles were formulated using a standard emulsion method and conjugated with glycocalicin, the external fraction of platelet GPIbα, via carbodiimide chemistry. Surface-coated and cellular uptake studies in ECs showed that conjugation of PLGA nanoparticles, with GPIb, significantly increased nanoparticle adhesion to P-selectin- and vWF-coated surfaces as well as nanoparticle uptake by activated ECs under fluid shear stresses.

View Article and Find Full Text PDF

PLGA nanoparticles are widely used to deliver pharmacological compounds and genes to a variety of cell types. Despite the fact that many of these cells types depend critically on ion channel activity to function normally, there have been no studies on the effect of nanoparticles on the ion channel activity. To this end, we have investigated the effect of nanoparticles on cholecystokinin (CCK)-releasing enteroendocrine cell (EEC) line STC-1.

View Article and Find Full Text PDF

Under physiological and pathological conditions, vascular smooth muscle cells (SMC) are exposed to different biochemical factors and biomechanical forces. Previous studies pertaining to SMC responses have not investigated the effects of both factors on SMCs. Thus, in our research we investigated the combined effects of growth factors like Bfgf (basic fibroblast growth factor), TGF-beta (transforming growth factor beta) and PDGF (platelet-derived growth factor) along with physiological cyclic strain on SMC responses.

View Article and Find Full Text PDF

The purpose of this research project was to develop nanoparticles with improved targeting, adhesion, and cellular uptake to activated or inflamed endothelial cells (ECs) under physiological flow conditions. Our hypothesis is that by mimicking platelet binding to activated ECs through the interaction between platelet glycoprotein Ibalpha (GP Ibalpha) and P-selectin on activated endothelial cells, GP Ibalpha-conjugated nanoparticles could exhibit increased targeting and higher cellular uptake in injured or activated endothelial cells under physiological flow conditions. To test this hypothesis, fluorescent-carboxylated polystyrene nanoparticles were selected for the study as a model particle because of its narrow size distribution as a "proof-of-concept.

View Article and Find Full Text PDF