Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics.
View Article and Find Full Text PDFTheileria parasites are responsible for devastating cattle diseases, causing major economic losses across Africa and Asia. Theileria spp. stand apart from other apicomplexa parasites by their ability to transform host leukocytes into immortalized, hyperproliferating, invasive cells that rapidly kill infected animals.
View Article and Find Full Text PDFMechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing.
View Article and Find Full Text PDFThe coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice.
View Article and Find Full Text PDFMetabolic reprogramming is an important feature of host-pathogen interactions and a hallmark of tumorigenesis. The intracellular apicomplexa parasite induces a Warburg-like effect in host leukocytes by hijacking signaling machineries, epigenetic regulators and transcriptional programs to create a transformed cell state. The molecular mechanisms underlying host cell transformation are unclear.
View Article and Find Full Text PDFThe intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet 'oncogene addiction' implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies.
View Article and Find Full Text PDFUpregulation of the matrix metalloproteinase (MMP)-9 plays a central role in tumor progression and metastasis by stimulating cell migration, tumor invasion, and angiogenesis. To gain insights into MMP-9 expression, we investigated its epigenetic control in a reversible model of cancer that is initiated by infection with intracellular Theileria parasites. Gene induction by parasite infection was associated with trimethylation of histone H3K4 (H3K4me3) at the MMP-9 promoter.
View Article and Find Full Text PDFPlants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used.
View Article and Find Full Text PDFRho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2005
Inactivation on both alleles of the hSNF5/INI1 tumor suppressor gene which encodes a subunit of the human SWI/SNF chromatin remodelling complex occurs in most malignant rhabdoid tumors. No paralog of hSNF5/INI1 is identified in the human genome. In contrast, it has two homologs in the yeast Saccharomyces cerevisiae, SNF5 and SFH1 which encode core components of the ySWI/SNF and RSC complexes, respectively.
View Article and Find Full Text PDFhSNF5/INI1, which encodes a component of the ATP-dependent chromatin remodeling hSWI-SNF complex, is a tumor suppressor gene mutated in malignant rhabdoid tumors. We have developed a tetracycline-based hSNF5/INI1-inducible system in a hSNF5/INI1-deficient malignant rhabdoid tumor cell line and studied time course variation of 22,000 genes/expressed sequence tags upon hSNF5/INI1 induction. A total of 482 responsive genes were identified and further clustered into 9 groups of coregulated genes.
View Article and Find Full Text PDFThe hSNF5/INI1 gene encodes a member of the SWI/SNF chromatin remodelling complexes. It was recently identified as a tumour suppressor gene mutated in sporadic and hereditary Malignant Rhabdoid Tumours (MRT). However, the role of hSNF5/INI1 loss-of-function in tumour development is still unknown.
View Article and Find Full Text PDF