ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2016
The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis.
View Article and Find Full Text PDFEts-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel interaction partner of Ets-1.
View Article and Find Full Text PDFEts-1 is a transcription factor that plays an important role in various physiological and pathological processes, such as development, angiogenesis, apoptosis and tumour invasion. In the present study, we have demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed in a caspase-dependent manner in Jurkat T-leukaemia cells undergoing apoptosis, resulting in three C-terminal fragments Cp20, Cp17 and Cp14 and a N-terminal fragment, Np36. In vitro cleavage of Ets-1 p51 by caspase 3 produces fragments consistent with those observed in cells undergoing apoptosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2009
The Ets-1 transcription factor plays an important role in various physiological and pathological processes. These diverse roles of Ets-1 are likely to depend on its interaction partner proteins. We used our previously developed, recombinant biotinylated Ets-1 that conserves native Ets-1 properties to identify new interaction partners.
View Article and Find Full Text PDFIdentification of Ets-1 interaction partners is critical for understanding its properties. Ets-1 DNA-binding is governed by an intramolecular mechanism called autoinhibition. Ets-1 increases its DNA-binding affinity by counteracting autoinhibition through binding either to a particular organization of Ets binding sites (EBS) in palindrome, as in the Stromelysin-1 promoter, or to EBS adjacent to DNA-binding sites of its partners by combinatorial interactions, as in the Collagenase-1 promoter.
View Article and Find Full Text PDFHorizontal nondenaturing electrophoresis of proteins in polyacrylamide gels was used to observe specific interactions between membrane proteins. The method was particularly well suited for solubilized transporters of the outer membrane of Gram-negative bacteria, and allowed specific complexes of transporter and the inner-membrane protein TonB to be isolated. We have used this method to investigate the interactions between four different outer-membrane transporters, and the TonB proteins from two different organisms.
View Article and Find Full Text PDF