Publications by authors named "Souhail Al-Abed"

In this paper, we report the successful application of a patent-pending reduced bimetallic nanoparticle catalytic system developed for the remediation of polychlorinated biphenyl (PCB)-contaminated sediment and aquatic media. The formation of bimetallic nanoparticles associated with the granular activated carbon (GAC) were confirmed by high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy showed the presence of the bimetallic matrix in reduced, albeit mixed, states.

View Article and Find Full Text PDF

Metals and metalloids are widely used in producing plastic materials as fillers and pigments, which can be used to track the environmental fate of real-life nanoplastics in environmental and biological systems. Therefore, this study investigated the metal and metalloids concentrations and fingerprint in real-life model nanoplastics generated from new plastic products (NPP) and from environmentally aged ocean plastic fragments (NPO) using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-TOF-MS) and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX). The new plastic products include polypropylene straws (PPS), polyethylene terephthalate bottles (PETEB), white low-density polyethylene bags (LDPEB), and polystyrene foam shipping material (PSF).

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter.

View Article and Find Full Text PDF

In recent years, the emission of particles and gaseous pollutants from 3D printing has attracted much attention due to potential health risks. This study investigated the generation of environmentally persistent free radicals (EPFRs, organic free radicals stabilized on or inside particles) in total particulate matter (TPM) released during the 3D printing process. Commercially available 3D printer filaments, made of acrylonitrile-butadiene-styrene (ABS) in two different colors and metal content, ABS-blue (19.

View Article and Find Full Text PDF

A high-throughput approach to detecting, quantifying, and characterizing microplastics (MPs) by shape, size, and polymer type using laser direct infrared (LDIR) spectroscopy in surface water samples is demonstrated. Three urban creeks were sampled for their MP content near Cincinnati, OH. A simple Fenton reaction was used to oxidize the surface water samples, and the water samples were filtered onto a gold-coated polyester membrane.

View Article and Find Full Text PDF

Watershed systems influenced by mining waste products can persist for many years after operations are ceased, leading to negative impacts on the health of the surrounding environment. While geochemical behaviors of these trace metals have been studied extensively at the benchtop-scale, much fewer studies have looked at controls on their distributions at the watershed-level. In this study, trace metals (As, Cd, Cr, Cu, Ni, and Zn) were reported from water and stream bed sediments at eight sites between the years 2014-2018 along a watershed undergoing active remediation efforts.

View Article and Find Full Text PDF

The efficiency and adsorption mechanism of zinc removal was assessed in aqueous solution using four biochars from multiple biomass residues (poultry litter and three tree species). The effect of pH, kinetic effects, and isotherm fittings were investigated, as well as zinc-laden biochar using x-ray diffraction and absorption near edge structure. Sorbent load results showed softwood biochar exhibited the greatest zinc removal from both deionized (15 mg/L) and mining influenced river water (10 mg/L).

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are the most widely used engineered nanomaterials in consumer products, primarily due to their antimicrobial properties. This widespread usage has resulted in concerns regarding potential adverse environmental impacts and increased probability of human exposure. As the number of AgNP consumer products grows, the likelihood of interactions with other household materials increases.

View Article and Find Full Text PDF

A collection of six commercially available, 3D printer filaments were analyzed with respect to their gas-phase emissions, specifically volatile organic compounds (VOCs), during simulated fused filament fabrication (FFF). Filaments were chosen because they were advertised to contain metal particles or carbon nanotubes. During experimentation, some were found to contain other non-advertised additives that greatly influenced gas-phase emissions.

View Article and Find Full Text PDF

Micro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins.

View Article and Find Full Text PDF

The growing and pervasive presence of plastic pollution has attracted considerable interest in recent years, especially small (< 5 mm) plastic particles known as 'microplastics' (MPs). Their widespread presence may pose a threat to marine organisms globally. Most of the nano and microplastic (N&MP) pollution in marine environments is assumed to originate from land-based sources, but their sources, transport routes, and transformations are uncertain.

View Article and Find Full Text PDF

The utilization of silver nanoparticles (AgNPs) in consumer products has significantly increased in recent years, primarily due to their antimicrobial properties. Increased use of AgNPs has raised ecological concerns. Once released into an aquatic environment, AgNPs may undergo oxidative dissolution leading to the generation of toxic Ag.

View Article and Find Full Text PDF

Twenty-two silver nanoparticle (AgNP) consumer products (CPs) were analyzed with respect to their silver speciation. Three CPs and three lab-synthesized particles were selected to simulate environmental fate and transport by simulating their intended usage and disposal methods. Since many of these products are meant for ingestion, we simulated their usage by exposing them to human synthetic stomach fluid followed by exposure to wastewater sludge.

View Article and Find Full Text PDF

The goal of the present paper is to develop chemometrics-based multivariate calibration approaches for simultaneously determining quantity of individual carbon nanotubes (CNTs) in a multicomponent environmental matrix using a microwave induced heating method. A multifactor and multilevel experiment design was used to create 4 separate calibration datasets. Each calibration dataset contained 25 orthogonal CNTs with 2 or 3 factors (CNTs: single-walled CNTs (SWCNTs)/multi-walled CNTs (MWCNTs)/carboxylated MWCNTs (MWCNT-COOH)) and 5 levels (CNTs mass).

View Article and Find Full Text PDF

Flue gas desulfurization gypsum (FGDG) is an industrial by-product generated during the flue gas desulfurization process in coal-fired power plants. Due to its abundance, chemical and physical properties, FGDG has been used in several beneficial applications. However, during the past decade, the rate of beneficially used FGDG has gradually decreased, while its production has drastically increased.

View Article and Find Full Text PDF

Partition coefficient () values available in the literature are often used in fate and transport modeling conducted as part of beneficial use risk assessments for industrial byproducts. Because element partitioning depends on soil properties as well as characteristics of the byproduct leachate, site-specific values may lead to more accurate risk assessment. In this study, contamination risk to groundwater of beneficially reused byproducts was assessed using batch leaching tests on waste to energy bottom ash and coal combustion fly ash.

View Article and Find Full Text PDF

A commercially available, 3D printer nanocomposite filament of carbon nanotubes (CNTs) and acrylonitrile-butadiene-styrene (ABS) was analyzed with respect to its VOC emissions during simulated fused deposition modeling (FDM) and compared with a regular ABS filament. VOC emissions were quantified and characterized under a variety of conditions to simulate the thermal degradation that takes place during FDM. Increasing the residence time and temperature resulted in significant increases in VOC emissions, and the oxygen content of the reaction gas influenced the VOC profile.

View Article and Find Full Text PDF

The concerns regarding potential environmental release and ecological risks of multi-walled carbon nanotubes (MWCNTs) rise with their increased production and use. As a result, there is the need for an analytical method to determine the environmental concentration of MWCNTs. Although several methods have been demonstrated for the quantification of well-characterized MWCNTs, applying these methods to field samples is still a challenge due to interferences from unknown characteristics of MWCNTs and environmental media.

View Article and Find Full Text PDF

Mining-influenced water (MIW) is one of the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study.

View Article and Find Full Text PDF

A series of leaching and partitioning tests (Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP), Controlled Acidity Leaching Protocol (CALP), Acid Neutralization Capacity (ANC), and sequential extraction) were applied to three different soils to study the potential mobility of metals into groundwater. Two of these soils were lead (Pb)-contaminated soils (Hotspot 1 and Hotspot 2) collected from an urban site associated with lead smelting and other industrial operations. The third sample (Stockpile) was soil affected by previous contamination in the area, removed from residential properties, stockpiled, and selected to be used as fill material in the studied site.

View Article and Find Full Text PDF

Mining-influenced water (MIW) remediation is challenging, not only due to its acidity and high metal content, but also due to its presence in remotely located mine sites with difficult surrounding environments. An alternative to common remediation technologies, is the use of sulfate-reducing bacteria (SRB) to achieve simultaneous sulfate reduction and metal removal in on-site anaerobic passive systems. In these systems, the organic carbon source (substrate) selection is critical to obtaining the desired effluent water quality and a reasonable treated volume.

View Article and Find Full Text PDF

Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed.

View Article and Find Full Text PDF

The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 μS/cm for mine water discharges in the Appalachian region has been suggested to protect aquatic life and the environment. A USGS screening-level leach test was applied to individual strata from three cores collected from a surface mine site in the Central Appalachian region to generate preliminary conductivity rankings, which were used to classify strata for two disposal scenarios: (i) Unmodified Scenario, which included all extracted strata and (ii) Modified Scenario, which excluded 15% (by mass) of the overburden materials with the highest conductivities.

View Article and Find Full Text PDF

Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use, and eventual disposal requires the capability to forecast and avoid potential problems. This review provides a framework to evaluate the health and safety implications of ENM releases into the environment, including purposeful releases such as for antimicrobial sprays or nano-enabled pesticides, and inadvertent releases as a consequence of other intended applications. Considerations encompass product life cycles, environmental media, exposed populations, and possible adverse outcomes.

View Article and Find Full Text PDF