5-fluorouracil (5-FU), commercially available as a topical product, is approved for non-melanoma skin cancer (NMSC) treatment with several clinical limitations. This work aimed to develop 5-FU-loaded topical patches as a potential alternative to overcome such drawbacks. The patches offer accurate dosing, controlled drug release and improved patient compliance.
View Article and Find Full Text PDFPurpose: Co-administering multiple intravenous (IV) agents via Y-connectors is a common practice in hospitalised and fasting surgical patients. However, there is a lack of reliable data confirming the physical compatibility of some combinations including IV oxycodone, a drug that is gaining increasing popularity in the perioperative period. Concern regarding physical drug incompatibilities precludes concurrent coadministration with other common drugs through a single lumen.
View Article and Find Full Text PDFAdjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively.
View Article and Find Full Text PDFBackground: Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option.
Methods: Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach.
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection.
View Article and Find Full Text PDFTechnological advancements have created infinite opportunities and rendered our life easier at several fronts. Nonetheless, the environment has suffered the aftermaths of modernization. Ironically, the pharmaceutical industry was found to be a significant contributor to environmental deterioration.
View Article and Find Full Text PDFTopical patches containing 5-fluorouracil (5-FU) are a feasible alternative to overcome the shortcomings of commercial cream for the treatment of non-melanoma skin cancer (NMSC). Plasticizers are a critical component of drug-in-adhesive (DIA) patches as they can significantly affect the mechanical, adhesive and drug release characteristics of the patches. Eudragit® E (EuE) is a methacrylate-based cationic copolymer capable of producing flexible and adhesive films for topical application.
View Article and Find Full Text PDFInulin's unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules.
View Article and Find Full Text PDFThree-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2021
As a variety of novel technologies, 3D printing has been considerably applied in the field of health care, including cancer treatment. With its fast prototyping nature, 3D printing could transform basic oncology discoveries to clinical use quickly, speed up and even revolutionise the whole drug discovery and development process. This literature review provides insight into the up-to-date applications of 3D printing on cancer research and treatment, from fundamental research and drug discovery to drug development and clinical applications.
View Article and Find Full Text PDFComtrex tablets composed of paracetamol, pseudoephedrine and brompheniramine are widely used for relieving symptoms related to common cold. This study has overcome the challenging dosage form ratio (250:15:1) and proposed chromatographic methods for analyzing the ternary combination were utilized displaying different apparatus, solvents and sensitivity ranges. Three chromatographic methods namely thin layer chromatography (TLC), high performance liquid chromatography with ultra-violet detection (HPLC-UV) and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) were developed and validated for the simultaneous determination of the three drugs.
View Article and Find Full Text PDFBackground: Effective chromatographic methods were developed for the determination of a multicomponent capsule prescribed for treating the common cold. Greening approaches were adopted as opposed to conventional methods.
Objectives: Two novel, green chromatographic methods were established to quantitatively analyze the combination.
Paracetamol (PAR), Pseudoephedrine hydrochloride (PSE) and cetirizine dihydrochloride (CET) is a ternary mixture that composes tablets which are popular for the relief of flu in Egypt. The spectra of the drugs were overlapped and no spectrophotometric methods were reported to resolve the mixture. This research proposes four spectrophotometric methods that are efficient and require water only as a solvent.
View Article and Find Full Text PDF