Publications by authors named "Soucek T"

We aim to learn to temporally localize object state changes and the corresponding state-modifying actions by observing people interacting with objects in long uncurated web videos. We introduce three principal contributions. First, we develop a self-supervised model for jointly learning state-modifying actions together with the corresponding object states from an uncurated set of videos from the Internet.

View Article and Find Full Text PDF

Purpose Of The Study: The aim of this study was to simulate different types of cervical vertebra loading and to find out whether mechanical stress would concentrate in regions known in clinical practice as predilection sites for osteophyte formation. The objective was to develop a theoretical model that would elucidate clinical observations concerning the predilection site of bone remodelling in view of the physiological changes inside the cervical vertebral body.

Material And Methods: A real 3D-geometry of the fourth cervical vertebra had been made by the commercially available system ATOS II.

View Article and Find Full Text PDF

Reduced glucose metabolism and astrocyte activation in selective areas of the brain are pathological features of Alzheimer's disease (AD). The underlying mechanisms of low energy metabolism and a molecular basis for preventing astrocyte activation are not, however, known. Here we show that amyloid beta peptide (Abeta)-dependent astrocyte activation leads to a long-term decrease in hypoxia-inducible factor (HIF)-1alpha expression and a reduction in the rate of glycolysis.

View Article and Find Full Text PDF

It is frequently argued that both amyloid beta (Abeta) and oxidative stress are involved in the pathogenesis of Alzheimer's disease (AD). We show here that clonal nerve cell lines and primary cortical neurons that are resistant to Abeta toxicity have an enhanced flux of glucose through both the glycolytic pathway and the hexose monophosphate shunt. AD brain also has increased enzymatic activities in both pathways relative to age-matched controls.

View Article and Find Full Text PDF

The autosomal dominant disease tuberous sclerosis (TSC) is caused by mutations in either TSC1 on chromosome 9q34, encoding hamartin, or TSC2 on chromosome 16p13.3, encoding tuberin. TSC is characterized by hamartomas that occur in many organs of affected patients and these have been considered to likely result from defects in proliferation control.

View Article and Find Full Text PDF

In the mammalian cell cycle, the transition from the G1 phase to S phase, in which DNA replication occurs, is dependent on tight cell size control and has been shown to be regulated by the cyclin-dependent kinases (Cdks) 2, 3, 4 and 6. Activities of Cdks are controlled by association with cyclins and reversible phosphorylation reactions. An additional level of regulation is provided by inhibitors of Cdks.

View Article and Find Full Text PDF

Tuberous sclerosis is an autosomal dominant disorder characterized by the development of aberrant growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The tuberous sclerosis complex gene-2 (TSC2) on chromosome 16 encodes the tumor suppressor protein tuberin.

View Article and Find Full Text PDF

The G1-S transition in mammalian cells has been demonstrated to require the cyclin-dependent kinases cdk2, cdk3 and cdk4/6. Here we show that a novel kinase activity associated with cdk3 fluctuates throughout the cell cycle differently from the expression of cyclin D1-, E- and A-associated kinase activities. Cdk3 kinase activity is neither affected by p16 (in contrast to cdk4/6) nor by E2F-1 (in contrast to cdk2), but is downregulated upon transient p27 expression.

View Article and Find Full Text PDF

Tuberous sclerosis is an autosomal dominant disorder. Besides the development of benign growths (hamartomas) in different tissues, one hallmark of this disease is the presence of highly epileptogenic dysplastic lesions in the cerebral cortex (tubers) composed of abnormal shaped neurones. Patients often show evidence of severe mental retardation.

View Article and Find Full Text PDF

Tuberous sclerosis is an autosomal dominant disorder characterized by the development of benign growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The TSC2 gene on chromosome 16 encodes a 1784-amino acid tumor suppressor protein, tuberin, that functions as a GTPase-activating protein for Rap1, a member of the superfamily of Ras-related proteins.

View Article and Find Full Text PDF

Although a remarkable number of genes has been identified that are either activated or repressed via c-Myc, only few of them obviously contribute to Myc's biological effect--the induction of proliferation. We found that in logarithmically growing cells overexpression of Myc specifically induces thymidine kinase (TK) mRNA expression and enzyme activity, whereas loss of one allele of Myc causes downregulation of this enzyme. We show that activation of Myc triggers high levels of this normally strictly S-phase-regulated DNA metabolism enzyme in serum arrested G0 cells and causes high and constant levels of TK expression throughout the entire ongoing cell cycle.

View Article and Find Full Text PDF

The transcription factor E2F activates genes required for S phase, such as cyclin E and cyclin A. We show that, contrary to long term effects of E2F-1 overexpression, short ectopic overexpression of this transcription factor in logarithmically growing cells does neither affect the cell cycle distribution nor the cell size, but heavily induces cyclin E and A expression as well as cyclin E- and A-dependent kinase activities. We further separated logarithmically growing E2F-1-overexpressing cells according to their different cell cycle phases by centrifugal elutriation.

View Article and Find Full Text PDF

We analysed cyclin D1 mRNA and protein expression in several different cell types after separating these cells according to their different cell cycle phases by centrifugal elutriation. In normal human and rat fibroblasts cyclin D1 expression is high in early to mid G1 and decreases about 6-7 fold before onset of replication. It has been demonstrated that specific transforming events, such as loss of functional retinoblastoma protein, overexpression of c-myc, and transfection with the human papillomavirus oncoproteins E6 and E7 cause transcriptional downregulation of cyclin D1 expression in logarithmically growing cells.

View Article and Find Full Text PDF

It has been demonstrated that protein expression of p16, the inhibitor of cyclin-dependent kinase 4 and 6, increases 4 fold at the G1/S transition when serum-arrested cells are restimulated to logarithmic growth. We examined the cell cycle regulation of this cyclin-dependent kinase inhibitor in cells separated according to their cell cycle phases by centrifugal elutriation. Neither p16 mRNA nor its protein expression are regulated during the cell cycle of normal phytohemagglutinin-stimulated lymphocytes, retinoblastoma protein-negative cells, papilloma virus-transformed cells, and acute promyelocytic leukemia cells.

View Article and Find Full Text PDF