Publications by authors named "Souce M"

In the development and optimization of dermatological products, In Vitro Permeation Testing (IVPT) is pivotal for controlled study of skin penetration. To enhance standardization and replicate human skin properties reconstructed human skin and synthetic membranes are explored as alternatives. Strat-M® is a membrane designed to mimic the multi-layered structure of human skin for IVPT.

View Article and Find Full Text PDF

Objective: Increasing consumer demand for natural and environmentally friendly products is driving the cosmetic industry to seek greener and safer processes. High-frequency ultrasound technology (HFUT) stabilizes emulsions without adding emulsifying surfactants (ES). In this work, the formulation characteristics of an HFUT-treated emulsion and a Reference emulsion were compared for both caffeine and α-tocopherol.

View Article and Find Full Text PDF

In the present work, two photosensitizing drugs, Temoporfin and Verteporfin have been studied. Both have regular approval in Europe, Temoporfin for the treatment of head and neck cancers and Verteporfin for the treatment of age-related macular degeneration (AMD). The treatment modality, known as "Photodynamic Therapy" (PDT), involves drug activation with visible light in the presence of oxygen and production of reactive oxygen species (ROS) to destroy the pathological tissues.

View Article and Find Full Text PDF

Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR-partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key figures of merit is compared to that of similar established methodologies, based on studies available in literature.

View Article and Find Full Text PDF

Attenuated total reflectance-infrared spectroscopy (ATR-IR) coupled with partial least squares regression (PLSR) was evaluated as a rapid, label free and cost-effective tool to quantify water content in extracts obtained from spirulina wet biomass using a glucose glycerol natural deep eutectic solvent (NADES). NADESs are green, renewable and biodegradable solvents with unique properties outcompeting existing organic solvents, for instance, for plant or biomass extraction. The properties of NADESs depend critically on their water concentration, and therefore, it is essential to develop methods to monitor it, to ensure optimal extraction efficiency and experimental repeatability to achieve a better standardization of extraction protocols.

View Article and Find Full Text PDF

MicroRNAs (miRs) belong to a family of short non-coding endogenous RNAs. Their over-expression correlates with various pathologies: for instance, miRNA-155 (miR-155) is over-expressed upon the development of breast cancers. However, the detection of miRs as disease biomarkers suffers from insufficient sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • The cosmetic industry is responding to consumer demand for natural products by exploring high-frequency ultrasonication technology (HFUT) to create emulsions without emulsifying surfactants.
  • In a study comparing emulsions made with HFUT and conventional methods, HFUT emulsions were found to have smaller droplet sizes and higher viscosity, yet did not significantly affect caffeine absorption through human skin models.
  • The findings suggest that HFUT can produce effective cosmetic formulations with fewer ingredients, indicating a promising direction for greener practices in the cosmetic industry.
View Article and Find Full Text PDF

The development and characterization of reconstructed human epidermis (RHE) is an active area of R&D. RHE can replace animal tissues in pharmaceutical, toxicological and cosmetic sciences, yielding scientific and ethical advantages. RHEs remain costly, however, due to consumables and time required for their culture and a short shelf-life.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the effectiveness of using nanodispersions of fatty acid-based active cosmetic ingredients (ACI) in hydrophilic films to enhance skin absorption of hydrophobic ingredients.
  • They created nanodispersions of Punica granatum seed oil esters combined with vitamin E, which showed successful spherical formations around 100 nm in size.
  • Analysis demonstrated that these nanodispersions were evenly distributed in the films, offering a promising method to incorporate hydrophobic ingredients into hydrophilic cosmetic products while preventing their degradation over time.
View Article and Find Full Text PDF

We describe a novel protocol for a one-step, seed-less, organic solvent- and surfactant-free synthesis of optically dense aqueous colloids of gold nanoflowers (AuNF), with tunable absorption wavelength between 620 and 800 nm. We demonstrate that simple variation of the ratio of two reagents allows the plasmonic band position to be tuned to any desired wavelength ± 5 nm, namely to those of the laser sources commonly used for SERS spectroscopy. The AuNF size distribution was sufficiently narrow, comparable to that known with seed-mediated synthesis.

View Article and Find Full Text PDF

The use of small interfering RNA (siRNA) to regulate oncogenes appears as a promising strategy in the context of cancer therapy, especially if they are vectorized by a smart delivery system. In this study, we investigated the cellular trafficking of a siRNA nanovector (called CS-MSN) functionalized with the cell-penetrating peptide gH625 in a triple-negative breast cancer model. With complementary techniques, we showed that siRNA nanovectors were internalized by both clathrin- and caveolae-mediated endocytosis.

View Article and Find Full Text PDF

We report the synthesis and metabolic and biological evaluation of a series of 17 novel heterocyclic derivatives of isocombretastatin-A4 (iso-CA-4) and their structure-activity relationships. Among these derivatives, the most active compound, 4f, inhibited the growth of a panel of seven cancer cell lines with an IC in the low nanomolar range. In addition, 4f showed interesting activity against CA-4-resistant colon-carcinoma cells and multidrug-resistant leukemia cells.

View Article and Find Full Text PDF

Designing multitarget drugs have raised considerable interest due to their advantages in the treatment of complex diseases such as cancer. Their design constitutes a challenge in antitumor drug discovery. The present study reports a dual inhibition of tubulin polymerization and HDAC activity.

View Article and Find Full Text PDF

Objective: This study aimed at increasing the concentration of a hydrophobic lightening agent, Omegalight , in a hydrophilic cosmetic product by means of encapsulation in lipid-based submicron capsules. The core of these capsules is entirely made of the commercial lightening agent.

Methods: Lipid-based encapsulation systems (LNC) were prepared by the PIT method.

View Article and Find Full Text PDF

In this study, we evaluated the potential of lipid nanocapsules (LNC) of 120 nm as drug nanocarriers to treat skin diseases. As a model molecule, we encapsulated the fluorescent dye curcumin, which also is an antioxidant. Curcumin-loaded LNC showed interesting antioxidant properties and a low toxicity on human skin cells.

View Article and Find Full Text PDF

Calcium alginate nanocarriers (CaANCs) were developed as a potential tool for delivery of hydrophobic active molecules such as pharmaceutical and cosmetic active ingredients. In this study, we focused on interactions between CaANCs and keratinocytes in culture and examined toxicity, internalization and drug release. Prior to cellular interactions, cryogenic transmission electron microscopy images showed that CaANCs appear as regular, spherical and dense particles, giving evidence of the surface gelation of CaANCs.

View Article and Find Full Text PDF

The cutaneous penetration of hydrophobic active molecules is of foremost concern in the dermatology and cosmetic formulation fields. The poor solubility in water of those molecules limits their use in hydrophilic forms such as gels, which are favored by patients with chronic skin disease. The aim of this work is to design a novel nanocarrier of hydrophobic active molecules and to determine its potential as an ingredient of a topical form.

View Article and Find Full Text PDF

The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments.

View Article and Find Full Text PDF

Metallic nanoparticles (MNPs) such as iron oxide and gold nanoparticles are interesting platforms to build theragnostic nanocarriers which combine both therapeutic and diagnostic functions within a single nanostructure. Nevertheless, their surface must be functionalized to be suitable for in vivo applications. Surface functionalization also provides binding sites for targeting ligands, and for drug loading.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized to be an attractive platform for developing novel drug delivery approaches and thus several types of functionalized magnetic nanocarriers based on SPIONs have been synthesized and studied. The coating of the metal oxide surface was achieved in a one-pot synthesis with biocompatible polyethylene glycol (PEG) and thermo-responsive modified Pluronic® F68. The resulting thermo-responsive magnetic nanocarriers can incorporate water insoluble drugs into their hydrophobic compartment and later release them in a temperature dependent manner.

View Article and Find Full Text PDF

Hybrid (organic/inorganic) nanoparticles emerged as a simple solution to build "theranostic" systems. Due to their physical properties, superparamagnetic iron oxide nanoparticles (SPIONs) and plasmonic gold nanoparticles (Au-NPs) are extensively studied as a part of diagnostic and therapeutic strategies in cancer treatments. They can be used as agents for in vitro or in vivo imaging, for magnetic drug targeting and/or thermal therapy.

View Article and Find Full Text PDF

The aim of this work was to elucidate the impact of polyethylene glycol (PEG) polymeric coating on the in vitro and in vivo stealthiness of magnetic nanocarriers loaded or not with the anticancer drug doxorubicin. The comparison was made between aqueous suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by either citrate ions (C-SPIONs) or PEG(5000) (P-SPIONs), the latter being loaded or not with doxorubicin via the formation of a DOX-Fe(2+) complex (DLP-SPIONs). After determination of their relevant physico-chemical properties (size and surface charge), nanoparticle (NP) stealthiness was studied in vitro (ability to activate the complement system and uptake by monocytes and macrophage-like cells) and in vivo in mice (blood half-life; t(1/2), and biodistribution in main clearance organs).

View Article and Find Full Text PDF

We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect).

View Article and Find Full Text PDF

One of the new strategies to improve cancer chemotherapy is based on new drug delivery systems, like the polyethylene glycol-coated superparamagnetic iron oxide nanoparticles (PEG-SPION, thereafter called PS). In this study, PS are loaded with doxorubicin (DOX) anticancer drug, using a pre-formed DOX-Fe(2+) complex reversible at lower pH of tumour tissues and cancer cells. The DOX loaded PS (DLPS, 3% w/w DOX/iron oxide) present a hydrodynamic size around 60nm and a zeta potential near zero at physiological pH, both parameters being favourable for increased colloidal stability in biological media and decreased elimination by the immune system.

View Article and Find Full Text PDF

The present work depicts the efficient one-step synthesis and detailed evaluation of stable aqueous colloids of silver nanoparticles (NPs) coated with poly(ethylene glycol) (PEG) covalently attached to their surface. Due to steric repulsion between polymer-modified surfaces, the stability of the nanoparticle suspension was preserved even at high ionic strength (0.1 M NaCl).

View Article and Find Full Text PDF