We report multinary CuZnAS Se semiconductor nanocrystals in a wurtzite phase, achieved hot-injection synthesis. These nanocrystals exhibit a tunable bandgap and photoluminescence in the visible range. We employ density functional theory and virtual crystal approximation to reveal the bandgap trends influenced by the main group metals and S/Se alloying.
View Article and Find Full Text PDFNanoparticle-based drugs offer attractive advantages like targeted delivery to the diseased site and size and shape-controlled properties. Therefore, understanding the particulate flow of the nanodrugs is important for effective delivery, accurate prediction of required dosage, and developing efficient drug delivery platforms for nanodrugs. In this study, the transport of nanodrugs including flow velocity and deposition is investigated using three model metal oxide nanodrugs of different sizes including iron oxide, zinc oxide, and combined Cu-Zn-Fe oxide synthesized via a modified polyol approach.
View Article and Find Full Text PDFTransition-metal chalcogenide nanostructures provide a unique material platform to engineer next-generation energy storage devices such as lithium-ion, sodium-ion, and potassium-ion batteries and flexible supercapacitors. The transition-metal chalcogenide nanocrystals and thin films have enhanced electroactive sites for redox reactions and hierarchical flexibility of structure and electronic properties in the multinary compositions. They also consist of more earth-abundant elements.
View Article and Find Full Text PDFIn-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e.
View Article and Find Full Text PDFThe use of diverse metal nanoparticles (MNPs) in a wide range of commercial products has led to their co-existence in the aqueous environment. The current study explores the dispersion and aggregation fate of five prominent MNPs (silver, copper, iron, nickel, and titanium), in both their individual and co-existing forms. We address a knowledge gap regarding their environmental fate under turbulent condition akin to flowing rivers.
View Article and Find Full Text PDFThe COVID-19 pandemic shut down undergraduate research programs across the United States. A group of 23 colleges, universities, and research institutes hosted remote undergraduate research programs in the life sciences during Summer 2020. Given the unprecedented offering of remote programs, we carried out a study to describe and evaluate them.
View Article and Find Full Text PDFThe increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products.
View Article and Find Full Text PDFMultinary chalcogenide semiconductor nanocrystals are a unique class of materials as they offer flexibility in composition, structure, and morphology for controlled band gap and optical properties. They offer a vast selection of materials for energy conversion, storage, and harvesting applications. Among the multinary chalcogenides, Cu-based compounds are the most attractive in terms of sustainability as many of them consist of earth-abundant elements.
View Article and Find Full Text PDFNanoparticles (NPs) are considered as one of the most promising drug delivery vehicles and a next-generation solution for current medical challenges. In this context, variables related to flow of NPs such as the quantity of NPs lost during transport and flow trajectory greatly affect the clinical efficiency of NP drug delivery systems. Currently, there is little knowledge of the physical mechanisms dominating NP flow inside the human body due to the limitations of available experimental tools for mimicking complex physiological environments at the preclinical stage.
View Article and Find Full Text PDFIn this work, we report a facile approach to modify the magnetic and electrical property of Hipco single-walled carbon nanotubes (SWCNTs) by attaching iron oxide nanoparticles (FeNPs). The Raman spectra of FeNP-SWCNTs revealed an apparent intensity reduction of metallic peaks in Radial breathing mode (RBM) region, which indicates the ratio change between the metallic and semiconducting component of SWCNTs after modification. Distinctive magnetic and electric resistance properties of FeNP-SWCNTs were found to be associated with the different shapes of FeNPs.
View Article and Find Full Text PDFThe rising demand for food and energy crops has triggered interest in the use of nanoparticles for agronomy. Specifically, iron oxide-based engineered nanoparticles are promising candidates for next-generation iron-deficiency fertilizers. We used iron oxide and hybrid Pt-decorated iron oxide nanoparticles, at low and high concentrations, and at varied pHs, to model seed pre-soaking solutions for investigation of their effect on embryonic root growth in legumes.
View Article and Find Full Text PDFProteins are widely utilized as templates in biomimetic synthesis of gold nanocrystals. However, the role of proteins in mediating the pathways for gold nucleation and growth is not well understood, in part because of the lack of spatial resolution in probing the complicated biomimetic mineralization process. Self-assembled protein cages, with larger size and symmetry, can facilitate in the visualization of both biological and inorganic components.
View Article and Find Full Text PDFBinder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures.
View Article and Find Full Text PDFA new family of quaternary semiconductors Cu2ZnAS4-x and CuZn2AS4 (A = Al, Ga, In) has been synthesized in the form of wurtzite phase nanocrystals for the first time. The nanocrystals can be converted to the stannite phase via thermal annealing under a N2 atmosphere. A direct band gap in the visible wavelength region combined with a high absorption cross-section makes these materials promising for solar energy conversion applications.
View Article and Find Full Text PDFCatastrophic oil spills and oil from waste waters such as bilge and fracking waters pose major environmental concerns. The limitations of existing cleanup techniques for benign oil remediation has inspired a recent scientific impetus to develop oil-absorbing smart nanomaterials. Magnetic nanocomposites were here designed to allow easy recovery from various systems.
View Article and Find Full Text PDFAn effective approach to synthesizing crystalline iron oxide nanoplates (~3 nm thick) and nanoflowers composed of ~5 nm small grains was reported. The formation of different-shaped nanoparticles in a similar system was achieved by controlling the nucleus concentration and growth rate.
View Article and Find Full Text PDFWe report a facile approach to the conjugation of protein-encapsulated gold fluorescent nanoclusters to the iron oxide nanoparticles through catechol reaction. This method eliminates the use of chemical linkers and can be readily extended to the conjugation of biological molecules and other nanomaterials onto nanoparticle surfaces. The key to the success was producing water-soluble iron oxide nanoparticles with active catechol groups.
View Article and Find Full Text PDFThe water dispensability and stability of high quality iron oxide nanoparticles synthesized in organic solvents are major issues for biomedical and biological applications. In this paper, a versatile approach for preparing water-soluble iron oxide nanoparticles with great stability and selective surface functionality (-COOH, -NH(2), or -SH) was demonstrated. The hydrophobic nanoparticles were first synthesized by the thermal decomposition of an iron oleate complex in organic solvent.
View Article and Find Full Text PDFIron oxide nanowhiskers with dimensions of approximately 2 × 20 nm were successfully synthesized by selectively heating an iron oleate complex. Such nanostructures resulted from the difference in the ligand coordination microenvironments of the Fe(III) oleate complex, according to our electronic structure calculations and thermogravimetric analysis. A ligand-directed growth mechanism was subsequently proposed to rationalize the growth process.
View Article and Find Full Text PDF