As in other fields, chronotherapy applied to arterial hypertension (AHT) may have implications on oxidative stress. We compared the levels of some redox markers between hypertensive patients with morning and bedtime use of renin-angiotensin-aldosterone system (RAAS) blockers. This was an observational study that included patients older than 18 years with a diagnosis of essential AHT.
View Article and Find Full Text PDFTo date, no model has jointly encompassed clinical, inflammatory, and redox markers with the risk of a non-dipper blood pressure (BP) profile. We aimed to evaluate the correlation between these features and the main twenty-four-hour ambulatory blood pressure monitoring (24-h ABPM) indices, as well as to establish a multivariate model including inflammatory, redox, and clinical markers for the prediction of a non-dipper BP profile. This was an observational study that included hypertensive patients older than 18 years.
View Article and Find Full Text PDFAn impaired nocturnal decrease in diastolic blood pressure (DBP) increases the blood pressure (BP) load, which is a main factor in endothelial dysfunction, atherosclerosis, and arterial stiffness. We aimed to quantify some markers of oxidative stress in hypertensive patients, to compare their levels between individuals with dipper and non-dipper DBP profiles, and to assess their correlation with the nocturnal DBP (nDBP) dipping. It was an observational study that included patients older than 18 years with a diagnosis of essential hypertension who consented to participate.
View Article and Find Full Text PDFWe aimed to evaluate the correlation of plasma levels of thiobarbituric acid reactive substances (TBARS) and reduced thiols with morbidity, mortality and immune response during and after SARS-CoV-2 infection. This was an observational study that included inpatients with SARS-CoV-2 infection older than 65 years. The individuals were followed up to the twelfth month post-discharge.
View Article and Find Full Text PDFMol Neurobiol
April 2019
Redox properties enable copper to perform its essential role in many biological processes, but they can also convert it into a potentially hazardous element. Its dyshomeostasis may have serious neurological consequences, and its possible involvement in Parkinson's disease and other neurodegenerative disorders has been suggested. The in vitro and ex vivo ability of copper to increase oxidative stress has already been demonstrated, and the aim of the present study was to assess in vivo the capacity of copper to cause brain oxidative damage and its ability to increase the dopaminergic degeneration induced by 6-hydroxydopamine.
View Article and Find Full Text PDFCopper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals.
View Article and Find Full Text PDFThe renin-angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the 'classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration.
View Article and Find Full Text PDFAiming at modulating two key enzymatic targets for Alzheimer's disease (AD), i.e., acetylcholinesterase (AChE) and monoamine oxidase B (MAO B), a series of multitarget ligands was properly designed by linking the 3,4-dimethylcoumarin scaffold to 1,3- and 1,4-substituted piperidine moieties, thus modulating the basicity to improve the hydrophilic/lipophilic balance.
View Article and Find Full Text PDFThe need for developing real disease-modifying drugs against neurodegenerative syndromes, particularly Alzheimer's disease (AD), shifted research towards reliable drug discovery strategies to unveil clinical candidates with higher therapeutic efficacy than single-targeting drugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase (AChE)-monoamine oxidase B (MAO-B) inhibitors through the decoration of the 2H-chromen-2-one skeleton. Compounds bearing a propargylamine moiety at position 3 displayed the highest in vitro inhibitory activities against MAO-B.
View Article and Find Full Text PDFNumerous studies have highlighted the potential of aluminium as an aetiological factor for some neurodegenerative disorders, particularly Alzheimer's disease and Parkinson's disease. Our previous studies have shown that aluminium can cause oxidative stress, reduce the activity of some antioxidant enzymes, and enhance the dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of Parkinson's disease in rats. We now report a study on the effects caused by aluminium on mitochondrial bioenergetics following aluminium addition and after its chronic administration to rats.
View Article and Find Full Text PDFThe multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity.
View Article and Find Full Text PDFInhibition data on rat monoamine oxidase B isoform of a large number of 7-metahalobenzyloxy-2H-chromen-2-one derivatives (67 compounds) carrying at position 4 a variety of substituents differing in steric, electrostatic, lipophilic and H-bonding properties, were modeled by Gaussian field-based 3D-QSAR and docking simulations carried out on rat MAO-B homology model. The computational study combining two different approaches provided easily interpretable binding modes, highlighting the dominant role of the steric effects at position 4, and guided the design of new, potent and selective MAO-B inhibitors. The 4-hydroxyethyl-, 4-chloroethyl-, 4-carboxamidoethyl-coumarin derivatives 70, 71, and 76, respectively, were endowed with high MAO-B inhibitory potency (pIC50 = 8.
View Article and Find Full Text PDFThe effects on the inhibition potencies of monoamine oxidase isoforms A (MAO-A) and B (MAO-B) depending upon changes in the physicochemical properties (size, shape, H-bonding, lipophilicity, etc.) of substituents at the C4 position of 2H-chromen-2-one derivatives were extensively investigated, and the results significantly added to our knowledge on this class of MAO inhibitors. All the 67 examined compounds showed high MAO-B selectivity, some of them achieving potency in the low nanomolar range.
View Article and Find Full Text PDFThe use of selective inhibitors of monoamine oxidase A (MAO-A) and B (MAO-B) holds a therapeutic relevance in the treatment of depressive disorders and Parkinson's disease (PD), respectively. Here, the discovery of a new class of compounds acting as monoamine oxidase inhibitors (MAO-Is) and bearing a 6'-substituted (E)-2-(benzofuran-3(2H)-ylidene)-N-alkylacetamide skeleton is reported. 6'-Sulfonyloxy derivatives exhibited outstanding affinities to MAO-A (7.
View Article and Find Full Text PDFIsolated mitochondria are widely used in metabolic and oxidative stress studies for neurodegenerative diseases. In the present work, the influence of EGTA and EDTA has been tested on a sucrose-based differential centrifugation protocol in order to establish the optimal concentrations to be used in this process. Our results showed alterations in both active and resting respiration, which were dependent on both the addition of EDTA or EGTA to the isolation buffer and the chelator concentration used.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome.
View Article and Find Full Text PDFA number of C-3 spirocyclic 2-benzazepine analogs of α-phenyl-N-tert-butyl nitrone (PBN) were synthesized and tested for their activity in protecting rat brain mitochondria and dopaminergic (DA) neurons against 6-hydroxydopamine (6-OHDA), a toxin inducing destruction of the DA nigro-striatal pathway in rodent models of Parkinson's disease. The newly synthesized nitrone derivatives were firstly investigated for their activity in decreasing the level of hydroxyl radicals generated during 6-OHDA oxidation, and inhibit lipid peroxidation (TBARS assay) and protein carbonyl content (PCC) in rat brain mitochondria. Most of the studied 2-benzazepine nitrones showed inhibitory potencies in both TBARS and PCC assays at least two magnitude orders higher than that of PBN.
View Article and Find Full Text PDFIntroduction: Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide.
View Article and Find Full Text PDFIn an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored.
View Article and Find Full Text PDFThe ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson's disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD.The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase).
View Article and Find Full Text PDFA number of new analogs of 3,3-dimethyl-4,5-dihydro-3H-2-benzazepine 2-oxide, structurally related to the nitrone spin trap alpha-phenyl-N-tert-butylnitrone (PBN), were synthesized and evaluated for their activity in vitro as protectants against oxidative stress induced in rat brain mitochondria by 6-hydroxydopamine (6-OHDA), a neurotoxin producing experimental model of Parkinson's disease (PD). As assessed by a fluorimetric assay, all 2-benzazepine-based nitrones were shown to decrease hydroxyl radicals (OH) generated during 6-OHDA autoxidation. The inhibition effects on the OH formation shown by the 5-gem-dimethyl derivatives, 2-4 times higher than those of the corresponding 5-methyl derivatives, were attributed to the flattening effect of the 5-gem-dimethyl group on the azepine ring, which should enhance nitrone reactivity and/or increase stability of the radical adducts.
View Article and Find Full Text PDFIn the present work, accumulation and distribution of aluminium in the rat brain following both intraperitoneal and oral administration were studied. Electrothermal atomic absorption spectrometry was used to determine aluminium concentration in different brain areas (cerebellum, ventral midbrain, cortex, hippocampus, and striatum). Most of the brain areas showed accumulation of aluminium, but a greater and more significant increase was noted in the group receiving aluminium via intraperitoneal administration.
View Article and Find Full Text PDFA number of condensed azines, mostly belonging to the families of indeno-fused pyridazines (1), pyrimidines (2, 3), and 1,2,4-triazines (4, 5), were synthesized and evaluated in vitro as monoamine oxidase (MAO) A and B inhibitors. Most of them showed higher inhibition potency toward MAO-B, the most effective one being 3-(3-nitrophenyl)-9H-indeno[1,2-e] [1,2,4]triazin-9-one (4c), which displayed an IC50 value of 80 nM and proved to be 10-fold more potent than its [2,1-e] fusion isomer 5. Replacing the 3-phenyl group of the known indeno[1,2-c]pyridazin-5-one MAO-B inhibitors with a flexible phenoxymethyl group enhanced the inhibitory potency.
View Article and Find Full Text PDFThe unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a partial lesion model of Parkinson's disease in the investigation of the molecular mechanisms involved in its pathogenesis and to assess new neuroprotective treatments. Its capacity to induce neurodegeneration has been related to its ability to undergo autoxidation in the presence of oxygen and consequently to generate oxidative stress. The aim of the present study was to investigate the time course of brain oxidative damage induced by 6-hydroxydopamine (6 microg in 5 microl of sterile saline containing 0.
View Article and Find Full Text PDF