Publications by authors named "Sotirios Zervopoulos"

Article Synopsis
  • EMT is linked to aggressive tumors, but the role of metabolic stress in this process is unclear. Researchers found that CRMP2A is induced in cancer cells under metabolic stress and helps suppress EMT and cancer stem cell-like traits.
  • When CRMP2A is lost, particularly in favorable environments like areas near blood vessels, cancer cells undergo changes that promote EMT, increased migration, and resistance to treatment.
  • A study on prostate cancer patients showed that lower levels of CRMP2A in metastatic tumors correlate with higher aggressiveness, suggesting CRMP2A acts as a brake on tumor progression.
View Article and Find Full Text PDF

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points.

View Article and Find Full Text PDF

Background Isolated loss-of-function single nucleotide polymorphisms (SNPs) for (a mitochondrial deacetylase) and (an atypical uncoupling protein enabling mitochondrial calcium entry) have been associated with both pulmonary arterial hypertension (PAH) and insulin resistance, but their collective role in animal models and patients is unknown. Methods and Results In a prospective cohort of patients with PAH (n=60), we measured SNPs for both and along with several clinical features (including invasive hemodynamic data) and outcomes. We found and SNPs often both in the same patient in a homozygous or heterozygous manner, correlating positively with PAH severity and associated with the presence of type 2 diabetes and 10-year outcomes (death and transplantation).

View Article and Find Full Text PDF

The von Hippel-Lindau (VHL) protein binds and degrades hypoxia-inducible factors (HIF) hydroxylated by prolyl-hydroxylases under normoxia. Although originally described as a tumor suppressor, there is growing evidence that VHL may paradoxically promote tumor growth. The significance of its described interactions with many other proteins remains unclear.

View Article and Find Full Text PDF

During evolution, cells acquired the ability to sense and adapt to varying environmental conditions, particularly in terms of fuel supply. Adaptation to fuel availability is crucial for major cell decisions and requires metabolic alterations and differential gene expression that are often epigenetically driven. A new mechanistic link between metabolic flux and regulation of gene expression is through moonlighting of metabolic enzymes in the nucleus.

View Article and Find Full Text PDF

Background: Clear-cell renal cell carcinoma (ccRCC) exhibits suppressed mitochondrial function and preferential use of glycolysis even in normoxia, promoting proliferation and suppressing apoptosis. ccRCC resistance to therapy is driven by constitutive hypoxia-inducible factor (HIF) expression due to genetic loss of von Hippel-Lindau factor. In addition to promoting angiogenesis, HIF suppresses mitochondrial function by inducing pyruvate dehydrogenase kinase (PDK), a gatekeeping enzyme for mitochondrial glucose oxidation.

View Article and Find Full Text PDF

Suppression of mitochondrial function promoting proliferation and apoptosis suppression has been described in the pulmonary arteries and extrapulmonary tissues in pulmonary arterial hypertension (PAH), but the cause of this metabolic remodeling is unknown. Mice lacking sirtuin 3 (SIRT3), a mitochondrial deacetylase, have increased acetylation and inhibition of many mitochondrial enzymes and complexes, suppressing mitochondrial function. Sirt3KO mice develop spontaneous PAH, exhibiting previously described molecular features of PAH pulmonary artery smooth muscle cells (PASMC).

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH.

View Article and Find Full Text PDF

Unlabelled: Right ventricular (RV) failure is an important clinical problem with no available therapies, largely because its molecular mechanisms are unknown. Mitochondrial remodeling resulting to a metabolic shift toward glycolysis has been described in RV hypertrophy (RVH), but it is unknown whether this is beneficial or detrimental. While clinically RV failure follows a period of compensation, the transition from a compensated (cRVH) to a decompensated hypertrophied RV (dRVH) is not studied in animal models.

View Article and Find Full Text PDF