Anal Chem
January 2024
The COVID-19 pandemic proved the great usefulness of lateral flow tests as self- and rapid tests. The rapid expansion of this field requires the design and validation of novel, affordable, and versatile technologies for the easy fabrication of a variety of lateral flow devices. In the present work, we have developed a new, simple, and cost-effective system for the dispensing of reagents on the membranes of lateral flow devices to be used for research purposes.
View Article and Find Full Text PDFAlkaline phosphatase (ALP) is the most widely used marker of the adequacy of milk pasteurization since it is inactivated at temperatures slightly higher than those required for elimination of pathogens. The cutoff level is 350 mU/L. The approved colorimetric, fluorometric, and chemiluminometric methods require specialized readers with photomultipliers as detectors, and the samples are usually analyzed one-by-one.
View Article and Find Full Text PDFThe present report introduces the smartphone as a simple, low-cost detector/imager for chemiluminometric hybridization assays and quantitative competitive polymerase chain reaction (QCPCR). In QCPCR the amplification products from the target and the competitor DNA have identical sizes but differ in a short sequence flanked by the primers. The products are hybridized with their cognate oligonucleotide probes, captured on microtiter wells and detected via an enzyme-catalyzed chemiluminogenic reaction using the smartphone as a detector/imager.
View Article and Find Full Text PDFChemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model.
View Article and Find Full Text PDFThere is a growing interest in the development of biosensors in the form of simple lateral flow devices that enable visual detection of nucleic acid sequences while eliminating several steps required for pipetting, incubation and washing out the excess of reactants. In this work, we present the first dipstick-type nucleic acid biosensors based on quantum dots (QDs) as reporters. The biosensors enable sequence confirmation of the target DNA by hybridization and simple visual detection of the emitted fluorescence under a UV lamp.
View Article and Find Full Text PDFMicroarray technology covers the urgent need to exploit the accumulated genetic information from large-scale sequencing projects and facilitate investigations on a genome-wide scale. Although most applications focus on DNA microarrays, the technology has expanded to microarrays of proteins, peptides, carbohydrates, and small molecules aiming either at detection/quantification of biomolecules or investigation of biomolecular interactions in a massively parallel manner. Microarray experiments require two specialized instruments: An arrayer (or printer), for construction of microarrays, and a readout instrument (scanner).
View Article and Find Full Text PDF