Micromachines (Basel)
September 2021
Femtosecond laser pulses have been successfully used for film-free single-cell bioprinting, enabling precise and efficient selection and positioning of individual mammalian cells from a complex cell mixture (based on morphology or fluorescence) onto a 2D target substrate or a 3D pre-processed scaffold. In order to evaluate the effects of higher pulse durations on the bioprinting process, we investigated cavitation bubble and jet dynamics in the femto- and picosecond regime. By increasing the laser pulse duration from 600 fs to 14.
View Article and Find Full Text PDFThree dimensional light confinement and distinct pillar microcavity modes in the ultraviolet have been observed in pillar resonators with embedded colloidal ZnO quantum dots fabricated by focused ion beam milling. Results from a waveguide model for the mode patterns and their spectral positions are in excellent agreement with the experimental data.
View Article and Find Full Text PDFWe present what is believed to be the first direct measurement of the relative timing jitter between the two parallel pulse trains of a two-branch femtosecond erbium-doped fiber laser, operated without active stabilization. The system provides independently tunable pulses in the near infrared with durations down to 13 fs. Using an interferometric optical cross-correlator, the phase-noise spectral density is measured with high sensitivity in a range from 1 Hz up to the Nyquist frequency of 24.
View Article and Find Full Text PDFWe report on a single-pass device that efficiently converts the broadband near-infrared output from a femtosecond fiber laser into a narrow spectrum in the visible. With fan-out poled MgO:LiNbO3 we obtain sub-picosecond, continuously tunable pulses in the 520-700 nm range. Conversion efficiencies as high as 30% are observed at typical pump power levels of 30 mW, corresponding to average output powers up to 9.
View Article and Find Full Text PDFWe report on highly efficient second, third and fourth harmonic generation from a femtosecond erbium-doped fiber source operating at 98 MHz repetition rate. By use of quasi-phase-matching in fan-out poled MgO:LiNbO(3), we generate pulses at 770 nm, 520 nm and 390 nm, with corresponding average powers of 120 mW, 55 mW and 6 mW, respectively. Our device can be employed as a two-color source providing radiation from ultraviolet to near infrared.
View Article and Find Full Text PDFTwo independently tunable femtosecond Ti:sapphire lasers are passively synchronized with a stable relative carrier-envelope offset phase. By heterodyning the spectral overlap of the two frequency combs, we observe multiple regimes for the cavity length difference in which the relative round-trip phase slip is effectively locked to zero. The strong correlation of the femtosecond pulse trains is maintained over minutes without any external stabilization, and relative cavity length variations of 50 nm are compensated.
View Article and Find Full Text PDF