Publications by authors named "Sotaro Kikuchi"

Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response.

View Article and Find Full Text PDF

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified.

View Article and Find Full Text PDF

Ischemic stroke is one of the most common neurological diseases. However, the impact of ischemic stroke on human cerebral tissue remains largely unknown due to a lack of ischemic human brain samples. In this study, we applied cerebral organoids derived from human induced pluripotent stem cells to evaluate the effect of oxygen-glucose deprivation/reoxygenation (OGD/R).

View Article and Find Full Text PDF

The excretion and reabsorption of uric acid both to and from urine are tightly regulated by uric acid transporters. Metabolic syndrome conditions, such as obesity, hypercholesterolemia, and insulin resistance, are believed to regulate the expression of uric acid transporters and decrease the excretion of uric acid. However, the mechanisms driving cholesterol impacts on uric acid transporters have been unknown.

View Article and Find Full Text PDF

The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear.

View Article and Find Full Text PDF

Insulin controls glucose homeostasis and cell growth through bifurcated signaling pathways. Dysregulation of insulin signaling is linked to diabetes and cancer. The spindle checkpoint controls the fidelity of chromosome segregation during mitosis.

View Article and Find Full Text PDF

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5.

View Article and Find Full Text PDF
Article Synopsis
  • DNA damage tolerance (DDT) helps cells avoid halting DNA replication when faced with damage, utilizing two main pathways: translesion DNA synthesis (TLS) and template-switched DNA synthesis (TS).
  • DDT is primarily regulated by the ubiquitination of a protein called proliferating cell nuclear antigen, which acts as a scaffold for DNA processes.
  • While TLS is an error-prone method of synthesizing DNA using damaged templates, TS is an error-free approach that enhances genome stability, making DDT critical for cell survival and cancer research.
View Article and Find Full Text PDF

Mitotic arrest deficient 2-like protein 2 (MAD2L2), also termed MAD2B or REV7, is involved in multiple cellular functions including translesion DNA synthesis (TLS), signal transduction, transcription, and mitotic events. MAD2L2 interacts with chromosome alignment-maintaining phosphoprotein (CAMP), a kinetochore-microtubule attachment protein in mitotic cells, presumably through a novel "WK" motif in CAMP. Structures of MAD2L2 in complex with binding regions of the TLS proteins REV3 and REV1 have revealed that MAD2L2 has two faces for protein-protein interactions that are regulated by its C-terminal region; however, the mechanisms underlying the MAD2L2-CAMP interaction and the mitotic role of MAD2L2 remain unknown.

View Article and Find Full Text PDF

The ring-shaped cohesin complex topologically entraps chromosomes and regulates chromosome segregation, transcription, and DNA repair. The cohesin core consists of the structural maintenance of chromosomes 1 and 3 (Smc1-Smc3) heterodimeric ATPase, the kleisin subunit sister chromatid cohesion 1 (Scc1) that links the two ATPase heads, and the Scc1-bound adaptor protein Scc3. The sister chromatid cohesion 2 and 4 (Scc2-Scc4) complex loads cohesin onto chromosomes.

View Article and Find Full Text PDF

DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR.

View Article and Find Full Text PDF

Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions.

View Article and Find Full Text PDF

Repro22 is a mutant mouse produced via N-ethyl-N-nitrosourea-induced mutagenesis that shows sterility with germ cell depletion caused by defective proliferation of primordial germ cells, decreased body weight, and partial lethality during embryonic development. Using a positional cloning strategy, we identified a missense mutation in Rev7/Mad2l2 (Rev7(C70R)) and confirmed that the mutation is the cause of the defects in repro22 mice through transgenic rescue with normal Rev7. Rev7/Mad2l2 encodes a subunit of DNA polymerase ζ (Polζ), 1 of 10 translesion DNA synthesis polymerases known in mammals.

View Article and Find Full Text PDF

REV1, REV3 and REV7 are pivotal proteins in translesion DNA synthesis that allows DNA synthesis to continue even in the presence of DNA damage. REV1 and REV3 are error-prone DNA polymerases, while REV7 acts as an adaptor protein that links them together. A ternary complex of the C-terminal domain of human REV1 in complex with REV7 bound to a REV3 fragment has been crystallized.

View Article and Find Full Text PDF

REV1, REV3, and REV7 are pivotal proteins in translesion DNA synthesis, which allows DNA synthesis even in the presence of DNA damage. REV1 and REV3 are error-prone DNA polymerases and function as inserter and extender polymerases in this process, respectively. REV7 interacts with both REV1 and REV3, acting as an adaptor that functionally links the two, although the structural basis of this collaboration remains unclear.

View Article and Find Full Text PDF