Respiratory muscle paralysis due to trauma or neurodegenerative diseases can have devastating consequences. Only a few studies have investigated the reconstruction of motor function in denervated diaphragms caused by such conditions. Here, we studied the efficacy of transplanting E14 embryonic spinal motor neurons (SMNs) into peripheral nerve grafts for functionally reconstructing a denervated diaphragm in a rat model.
View Article and Find Full Text PDFA wirelessly powered four-channel neurostimulator was developed for applying selective Functional Electrical Stimulation (FES) to four peripheral nerves to control the ankle and knee joints of a rat. The power of the neurostimulator was wirelessly supplied from a transmitter device, and the four nerves were connected to the receiver device, which controlled the ankle and knee joints in the rat. The receiver device had functions to detect the frequency of the transmitter signal from the transmitter coil.
View Article and Find Full Text PDFNeural cell transplantation targeting peripheral nerves is a potential treatment regime for denervated muscle atrophy. This study aimed to develop a new therapeutic technique for intractable muscle atrophy by the xenotransplantation of neural stem cells derived from pig fetuses into peripheral nerves. In this study, we created a denervation model using neurotomy in nude rats and transplanted pig-fetus-derived neural stem cells into the cut nerve stump.
View Article and Find Full Text PDFPromising treatments for upper motor neuron disease are emerging in which motor function is restored by brain-computer interfaces and functional electrical stimulation. At present, such technologies and procedures are not applicable to lower motor neuron disease. We propose a novel therapeutic strategy for lower motor neuron disease and injury integrating neural stem cell transplantation with our new functional electrical stimulation control system.
View Article and Find Full Text PDFMotoneuron transplantation into peripheral nerves undergoing Wallerian degeneration may have applications in treating diseases causing muscle paralysis. We investigated whether functional reinnervation of denervated muscle could be achieved by early or delayed transplantation after denervation. Adult rats were assigned to six groups with increasing denervation periods (0, 1, 4, 8, 12, and 24 weeks) before inoculation with culture medium containing (transplantation group) or lacking (surgical control group) dissociated embryonic motoneurons into the peroneal nerve.
View Article and Find Full Text PDFPeripheral nerve disconnections cause severe muscle atrophy and consequently, paralysis of limbs. Reinnervation of denervated muscle by transplanting motor neurons and applying Functional Electrical Stimulation (FES) onto peripheral nerves is an important procedure for preventing irreversible degeneration of muscle tissues. After the reinnervation of denervated muscles, multiple peripheral nerves should be stimulated independently to control joint motion and reconstruct functional movements of limbs by the FES.
View Article and Find Full Text PDF