Peritonitis and the resulting peritoneal injuries are common problems that prevent long-term peritoneal dialysis (PD) therapy in patients with end-stage kidney diseases. Previously, we have analyzed the relationship between the complement system and progression of peritoneal injuries associated with PD, particularly focusing on the early activation pathways and effects of the anaphylatoxins. We here utilized a novel mAb 2H2 that blocks assembly of the membrane attack complex (MAC) to investigate roles of the complement terminal pathway in PD-associated peritoneal injury.
View Article and Find Full Text PDFIn peritoneal dialysis (PD) patients, fungi and are considered important causative microorganisms for peritonitis with poor prognosis. Our objective was to explore expressions of membrane complement (C) regulators (CRegs) and tissue injuries in the peritoneum of patients with PD-related peritonitis, including fungal and peritonitis. In peritoneal biopsy tissues obtained at PD catheter removal, we investigated the severity of peritonitis-associated peritoneal injuries and the expression of CRegs, CD46, CD55, and CD59 against peritoneal tissues without any episode of peritonitis.
View Article and Find Full Text PDFBackground: During the last few decades, pathogenic mechanisms associated with uncontrolled activation of the complement (C) system and development of anti-C agents have been closely investigated in the field of nephrology. The usefulness of some C products such as C5a and sC5b-9 for diagnostic and prognostic purposes remains controversial. On the other hand, decreased renal function is being observed in many patients with or without nephritis as a background factor in progressively aging societies.
View Article and Find Full Text PDFThe membrane complement regulators (CRegs) CD46, CD55, and CD59 are highly expressed on human peritoneal mesothelial cells. However, how mesothelial CRegs change according to the peritoneal dialysis (PD) history of patients has remained unclear. We therefore examined longitudinal changes in CRegs in primary cultured mesothelial cells from PD patients (human peritoneal mesothelial cells; HPMCs) and examined which components of PD fluid (PDF) affect CRegs .
View Article and Find Full Text PDFFibrillary glomerulonephritis (FGN), a rare disease is pathologically characterized by glomerular fibril accumulation ranging from 12 to 24 nm in diameter with negative Congo red staining. Recently, the identification of DnaJ homolog subfamily B member 9 (DNAJB9) as a highly sensitive and specific marker for FGN has revolutionized diagnosis of this disease. However, few recent studies have reported DNAJB9-negative glomerulonephritis with fibrillar deposits.
View Article and Find Full Text PDF