Publications by authors named "Soshi Kanemoto"

G protein-coupled receptor 84 (Gpr84) is reportedly activated by medium-chain fatty acids and is involved in the pathology of liver fibrosis. Inflammatory stimulants, such as lipopolysaccharide and tumor necrosis factor-α, upregulate Gpr84 expression. However, the detailed molecular mechanism by which Gpr84 is induced remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Podocyte injury plays a significant role in the development and worsening of kidney diseases, with the transcription factor OASIS being a key player in this process.
  • Research shows that OASIS is expressed in podocytes and its increased levels during lipopolysaccharide (LPS) treatment contribute to kidney damage, while its deficiency protects against tubular injury.
  • Elevated OASIS in podocytes is linked to severe conditions in both mouse models and human patients with kidney issues, suggesting that OASIS negatively affects kidney health by disrupting kidney homeostasis.
View Article and Find Full Text PDF

Prevention of kidney fibrosis is an essential requisite for effective therapy in preventing chronic kidney disease (CKD). Here, we identify Old astrocyte specifically induced substance (OASIS)/cAMP responsive element-binding protein 3-like 1 (CREB3l1), a CREB/ATF family transcription factor, as a candidate profibrotic gene that drives the final common pathological step along the fibrotic pathway in CKD. Although microarray data from diseased patient kidneys and fibrotic mouse model kidneys both exhibit OASIS/Creb3l1 upregulation, the pathophysiological roles of OASIS in CKD remains unknown.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). In MS, a long disease duration is known to be a strong risk factor for converting the clinical course of the disease from relapse remitting MS to secondary progressing MS. There is a hypothesis that long sustained demyelination may exhaust neurons, however, pathological changes induced in neurons following demyelination remain unknown.

View Article and Find Full Text PDF

We previously reported that among the 37 RING finger protein (RNF) family members, mRNA is specifically expressed in the kidney under normal conditions. However, the mechanism supporting its kidney-specific expression pattern remains unclear. In this study, we elucidated the mechanism of the transcriptional activation of murine in inner-medullary collecting duct cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Mutations in the IDS protein result in misfolded proteins that accumulate in the endoplasmic reticulum (ER) and are degraded by a process called ER-associated degradation (ERAD), limiting the amount that can reach the lysosomes where they are normally active.
  • * The study found that while wild-type IDS can mature and reach lysosomes, IDS mutants build up in the ER and are targeted for degradation; however, inhibiting ERAD
View Article and Find Full Text PDF

Adult mammalian peripheral neurons have an intrinsic regrowth capacity in response to axonal injury. The induction of calcium ion (Ca) oscillations at an injured site is critical for the regulation of regenerative responses. In polarized neurons, distal axonal segments contain a well-developed endoplasmic reticulum (ER) network that is responsible for Ca homeostasis.

View Article and Find Full Text PDF

We identified 37 ubiquitin ligases containing RING-finger and transmembrane domains. Of these, we found that RNF183 is abundantly expressed in the kidney. RNF183 predominantly localizes to the endoplasmic reticulum (ER), Golgi, and lysosome.

View Article and Find Full Text PDF

Unfolded protein response (UPR) has roles not only in resolving the accumulation of unfolded proteins owing to endoplasmic reticulum (ER) stress, but also in regulation of cellular physiological functions. ER stress transducers providing the branches of UPR signaling are known to localize in distal dendritic ER of neurons. These reports suggest that local activation of UPR branches may produce integrated outputs for distant communication, and allow regulation of local events in highly polarized neurons.

View Article and Find Full Text PDF

Secretory and membrane proteins are synthesized in ribosomes, then mature in the endoplasmic reticulum (ER), but if ER function is impaired, immature defective proteins accumulate in the ER. This situation is called ER stress: in response, a defensive mechanism called the unfolded protein response (UPR) is activated in cells to reduce the defective proteins. During the UPR, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and RNA-dependent protein kinase (PKR)-like ER kinase (PERK) are activated, stress signals are transduced to the outside of the ER, and various cell responses, including gene induction, occur.

View Article and Find Full Text PDF

Androgen-Induced bZIP (AIbZIP) is structurally a bZIP transmembrane transcription factor belonging to the CREB/ATF family. This molecule is highly expressed in androgen-sensitive prostate cancer cells and is transcriptionally upregulated by androgen treatment. Here, we investigated molecular mechanism of androgen-dependent expression of AIbZIP and its physiological function in prostate cancer cells.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR).

View Article and Find Full Text PDF

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin-proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD.

View Article and Find Full Text PDF

The unfolded protein response (UPR) not only resolves endoplasmic reticulum (ER) stress, but also regulates cellular physiological functions. In this study, we first linked the UPR to the physiological roles of brown adipose tissue (BAT). BAT is one of the tissues that control energy homeostasis in the body.

View Article and Find Full Text PDF

OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis(-/-)) mouse embryonic fibroblasts.

View Article and Find Full Text PDF

Luman (also known as CREB3) is a type-II transmembrane transcription factor belonging to the OASIS family that localizes to the endoplasmic reticulum (ER) membrane under normal conditions. In response to ER stress, OASIS-family members are subjected to regulated intramembrane proteolysis (RIP), following which the cleaved N-terminal fragments translocate to the nucleus. In this study, we show that treatment of bone marrow macrophages (BMMs) with cytokines - macrophage colony-stimulating factor (M-CSF) and RANKL (also known as TNFSF11) - causes a time-dependent increase in Luman expression, and that Luman undergoes RIP and becomes activated during osteoclast differentiation.

View Article and Find Full Text PDF

BBF2H7 is an endoplasmic reticulum (ER)-resident transmembrane basic leucine zipper (bZIP) transcription factor that is cleaved at the transmembrane domain by regulated intramembrane proteolysis in response to ER stress. The cleaved cytoplasmic N-terminus containing transcription activation and bZIP domains translocates into the nucleus to promote the expression of target genes. In chondrocytes, the cleaved luminal C-terminus is extracellularly secreted and facilitates proliferation of neighboring cells through activation of Hedgehog signaling.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) stress transducer, box B-binding factor 2 human homolog on chromosome 7 (BBF2H7), is a basic leucine zipper (bZIP) transmembrane transcription factor. This molecule is activated in response to ER stress during chondrogenesis. The activated BBF2H7 accelerates cartilage matrix protein secretion through the up-regulation of Sec23a, which is responsible for protein transport from the ER to the Golgi apparatus and is a target of BBF2H7.

View Article and Find Full Text PDF

OASIS is a basic leucine zipper (bZIP) transmembrane transcription factor that is activated in response to endoplasmic reticulum (ER) stress. Previously, we showed that OASIS regulates final maturation of goblet cells in the large intestine. In the present study, to elucidate the roles of OASIS under pathophysiological conditions, we examined the stress response and inflammatory responses in Oasis deficient (Oasis⁻/⁻) mice exposed to dextran sulfate sodium (DSS) to induce colitis.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) stress transducer BBF2H7/CREB3L2 is an ER-resident transmembrane transcription factor. In response to physiological ER stress, it is processed at the transmembrane region to generate a cytoplasmic N terminus, which contains a basic leucine zipper (bZIP) domain, and luminal C terminus. The BBF2H7 N terminus functions as a transcription factor to promote the expression of ER-Golgi trafficking-related genes and plays crucial roles in chondrocyte differentiation.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor-A (VEGFA) is the main mediator of angiogenesis. Angiogenesis plays important roles not only in many physiological processes, but also in the pathophysiology of many diseases. VEGFA is one of the therapeutic targets of treatment for ocular diseases with neovascularization.

View Article and Find Full Text PDF

Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks.

View Article and Find Full Text PDF

BBF2H7 (box B-binding factor 2 human homolog on chromosome 7) is a basic leucine zipper transmembrane transcription factor that belongs to the cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor (ATF) family. This novel endoplasmic reticulum (ER) stress transducer is localized in the ER and is cleaved in its transmembrane region in response to ER stress. BBF2H7 has been shown to be expressed in proliferating chondrocytes in cartilage during the development of long bones.

View Article and Find Full Text PDF

OASIS is a member of the CREB/ATF family of transcription factors and modulates cell- or tissue-specific unfolded protein response signalling. Here we show that this modulation has a critical role in the differentiation of neural precursor cells into astrocytes. Cerebral cortices of mice specifically deficient in OASIS (Oasis(-/-)) contain fewer astrocytes and more neural precursor cells than those of wild-type mice during embryonic development.

View Article and Find Full Text PDF

OASIS is a basic leucine zipper transmembrane transcription factor localized in the endoplasmic reticulum (ER) that is cleaved in its transmembrane region in response to ER stress. This novel ER stress transducer has been demonstrated to express in osteoblasts and astrocytes and promote terminal maturation of these cells. Additionally, OASIS is highly expressed in goblet cells of the large intestine.

View Article and Find Full Text PDF