Publications by authors named "Soryeong Jeong"

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.

View Article and Find Full Text PDF

Background: The glymphatic system, essential for brain waste clearance, has been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Emerging imaging markers, such as the analysis along the perivascular space (ALPS) index and choroid plexus volume (CPV), may provide insights into glymphatic function, but their relevance to ALS remains unclear.

Objective: To assess glymphatic dysfunction in ALS patients using the ALPS index and CPV.

View Article and Find Full Text PDF

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

Introduction: Although psychotic behaviors can be difficult to assess in children, early identification of children at high risk for the emergence of psychotic symptoms may facilitate the prevention of related disorders. Psychotic-like experiences (PLEs), or subthreshold thought and perceptual disturbances, could be early manifestations of psychosis that may predict a future diagnosis of a psychosis-related disorder or nonspecific correlates of a wide range of psychological problems. Additional research is needed regarding how PLEs map onto dimensions of psychopathology in children.

View Article and Find Full Text PDF

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

The impact of age on the relationship between body mass index (BMI) and all-cause mortality in hemodialysis (HD) patients is not clearly understood. We analyzed the association between BMI and all-cause mortality, stratified by age, in patients undergoing HD using data from the Korean Renal Data System (KORDS). We analyzed 66,129 HD patients from the 2023 KORDS database, with data collected between 2001 and 2022.

View Article and Find Full Text PDF

We investigate the enhanced terahertz generation in the organic crystal BNA when pumped by compressed high-energy ytterbium laser pulses. By compressing the pump pulses from 170 fs down to 43 fs using an argon-filled hollow-core fiber and chirped mirrors, the terahertz conversion efficiency is increased by 2.4 times, leading to the generation of multi-microjoule terahertz pulses with a frequency spectrum almost twice as wide, extending up to 19 THz.

View Article and Find Full Text PDF

Background: Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Recently, a strategy involving the engineering of chemokine receptors on immune cells was developed to optimize adoptive cell therapy (ACT) for solid tumors. Given the variability in chemokine secretion among different tumor types, identifying and modulating the appropriate chemokine receptors is crucial. In this study, we utilized extensive RNA sequencing data from both tumor tissues from The Cancer Genome Atlas and normal tissues from Genotype-Tissue Expression to investigate the expression profiles of chemokines.

View Article and Find Full Text PDF

In South Korea, growing frustration among medical doctors over government healthcare policies, such as increasing medical student intake, has led to a surge in doctors considering practicing medicine abroad. Despite efforts to address specialty shortages, 82% of doctors believe these policies fail to tackle underlying issues like low compensation and legal protections for high-risk procedures. Engaging with public health perspectives, physicians can frame healthcare challenges and advocate for policy change.

View Article and Find Full Text PDF

SMEPPI is a small molecule synthesized as a derivative of KR-62980 that has anti-diabetic and anti-inflammatory activities. Despite the established physiological effects of KR-62980, the effects and benefits of SMEPPI remain largely unexplored. This study investigated the immunomodulatory functions of SMEPPI on macrophages and inflammatory diseases.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.

View Article and Find Full Text PDF

One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe liver inflammation and fibrosis due to an imbalanced immune response caused by enhanced bacterial components. The progression of MASH is closely linked to increased permeability of intestinal mucosal barrier facilitating enter of bacterial components into hepatic portal venous system. B cells are important immune cells for adaptive responses and enhance hepatic inflammation through cytokine production and T cell activation.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

The A Adenosine Receptor (AAR) is an important therapeutic target due to its role in inflammation and immune response regulation. Herein, we synthesized and evaluated 5'-deoxy-adenosine derivatives with oxygen at the 4'-position, comparing them to previously studied 4'-thionucleosides. Compound exhibited the highest binding affinity ( = 5.

View Article and Find Full Text PDF

Purpose: To compare clinicopathologic features and clinical outcomes of metastatic colorectal cancer (mCRC) based on EGFR amplification status.

Materials And Methods: Patients with mCRC who underwent next-generation sequencing using a targeted 244-gene panel from 2016 to 2021 were identified and screened for EGFR copy numbers. Cases with at least 5 copies were reviewed for tumor purity adjustment, and those with an adjusted copy number of ≥6 were defined as EGFR-amplified (EGFR amp+).

View Article and Find Full Text PDF

With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.

View Article and Find Full Text PDF

This study aimed to identify the clinical characteristics of patients with burning mouth syndrome (BMS) according to the low frequency/high frequency (LF/HF) ratio in the heart rate variability test and to evaluate the potential of the LF/HF ratio as an indicator for the diagnostic or predictive assessment of patients with BMS. A total of 469 patients with BMS who visited the Oral Diseases Clinic of Kyung Hee University Korean Medicine Hospital between January 1, 2018, and December 31, 2022, were included in the study. The patients were asked to rate their tongue pain on a visual analog scale before and after treatment.

View Article and Find Full Text PDF

Background And Objective: Telmisartan exhibits significant pharmacokinetic (PK) variability, but it remains unclear whether its PK profile is altered in hypertensive patients. This study aimed to characterize telmisartan PKs by conducting a meta-analysis and developing a pooled population PK model based on data from healthy subjects and hypertensive patients.

Methods: Relevant literature was identified by a systematic approach.

View Article and Find Full Text PDF

Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).

Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.

View Article and Find Full Text PDF