Simple and fast simultaneous quantifications in water of anti-inflammatory drugs, which belong to the emerging pollutants, represents a great challenge for water quality control. The development of electrochemical methods to meet the simultaneous and concomitant detection requirements depends mainly on the electrode material. The fullerene‑carbon nanofiber (FULL/CNF) and graphene‑carbon nanotubes (GR/CNT) paste electrodes as sensing elements were employed for the first time for the determination of diclofenac (DCF), naproxen (NPX) and ibuprofen (IBP) simultaneously and concomitantly.
View Article and Find Full Text PDFSodium diclofenac (DCF) presence reported in water use cycle at various concentrations including trace levels necessitates continuous development of advanced analytical method for its determination. In this work, ease electrochemical methods for DCF determination based on voltammetric and amperometric techniques were proposed using a simple combination of graphene with multi-walled carbon nanotubes as paste electrode. Integration of the graphene with multi-walled carbon nanotubes enlarged the electroactive surface area of the electrode and implicitly enhanced the electrochemical response for DCF determination.
View Article and Find Full Text PDFA homoleptic ionic Cu(I) coordination complex that was based on 2,2'-biquinoline ligand functionalized with long alkyl chains (Cu(I)-C18) was used as a precursor to modify a carbon nanofiber paste electrode (Cu-C18/CNF). Randomized copper oxide microelectrode arrays dispersed within carbon nanofiber paste (CuO/CNF) were obtained by electrochemical treatment of Cu-C18/CNF while using cyclic voltammetry (CV). The CuO/CNF exhibited high electrocatalytic activity towards glucose oxidation at +0.
View Article and Find Full Text PDFThe requirements of the Water Framework Directive to monitor diclofenac (DCF) concentration in surface water impose the need to find advanced fast and simple analysis methods. Direct voltammetric/amperometric methods could represent efficient and practical solutions. Fullerene⁻carbon nanofibers in paraffin oil as a paste electrode (F⁻CNF) was easily obtained by simple mixing and tested for DCF detection using voltammetric and amperometric techniques.
View Article and Find Full Text PDFIn this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA).
View Article and Find Full Text PDFThis work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes.
View Article and Find Full Text PDFThe aim of this study is to prepare and characterize two types of silver-functionalized carbon nanofiber (CNF) composite electrodes, i.e., silver-decorated CNF-epoxy and silver-modified natural zeolite-CNF-epoxy composite electrodes suitable for ibuprofen detection in aqueous solution.
View Article and Find Full Text PDFThe aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination.
View Article and Find Full Text PDF