Model-based tools applied to wastewater management have been identified as an emerging solution to address the associated challenges related to the optimization of the technologies, meeting more restricted water quality standards. Thus, for the first time, the demonstration of the solar photo-Fenton process for microcontaminant removal in the operating environment of a model-based tool is reported. This tool aids in determining the right cost-effective seasonal strategy for a 37-m demonstration-scale photoreactor operating in a rural wastewater treatment plant.
View Article and Find Full Text PDFPig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.
View Article and Find Full Text PDFFor the first time, the sequential combination of UVC-LED (276 nm) and photo-Fenton/UVA-LED (376 nm) process has been assessed in continuous flow mode for wastewater reclamation according to the new European Regulation for reuse in agricultural irrigation (EU 2020/741). The results show that it is possible to obtain water quality class B (Escherichia coli ≤ 100 CFU/100 mL) by UVC-LED irradiation alone, operating the system with a hydraulic residence time (HRT) of 6.5 min and liquid depth of 5 cm in the case of secondary effluents with low Escherichia coli load (8.
View Article and Find Full Text PDFA novel strategy based on solar photo-Fenton mediated by ferric nitrilotriacetate (Fe-NTA) combined with NaOCl in continuous flow mode for wastewater reclamation has been studied. Escherichia coli (E. coli) inactivation attained ≥ 5 log10-units, meeting the most restrictive EU 2020/741 target (10 CFU/100 mL), and 75% of organic microcontaminant total load was removed.
View Article and Find Full Text PDFFor the first time, a continuous flow solar photo-Fenton demonstration plant has been assessed for wastewater reclamation according to the EU 2020/741 regulation. The treated water qualities achieved under two operating strategies (acidic and neutral pH) in a 100-m raceway pond reactor were explored in terms of liquid depth, iron source, reagent concentrations, and hydraulic residence time over three consecutive days of operation. The results obtained at acidic pH showed removal percentages of contaminants of emerging concern (CECs) > 75% and water quality classes B, C and D according to EU regulation at both assessed operating conditions, with treatment capacities up to 1.
View Article and Find Full Text PDFThis study presents, for the first time, the concurrent supply of the oxidants HO and NaOCl in solar-driven Fenton-like processes at neutral pH with ferric nitrilotriacetate (Fe-NTA) for wastewater reclamation. Simultaneous Escherichia coli (E. coli) inactivation and the removal of the antibiotic sulfamethoxazole (SMX) at 50 μg/L in municipal effluents were investigated in 5-cm deep raceway pond reactors.
View Article and Find Full Text PDFSimultaneous microorganism inactivation and organic microcontaminant removal in municipal wastewater treatment plant (WWTP) secondary effluents by the solar photo-Fenton process mediated by Fe-NTA is studied in depth. To achieve this objective, different key aspects were addressed: (i) the effect of initial Fe-NTA concentration at 1:1 molar ratio (0.10-0.
View Article and Find Full Text PDFThis work presents, for the first time, a kinetic study of the solar photo-Fenton process at neutral pH mediated by the Fe-NTA complex (molar ratio 1: 1) applied to remove contaminants of emerging concern (CECs). To this end, wastewater treatment plant (WWTP) secondary effluents were treated in a raceway pond reactor (RPR) at pilot plant scale with 0.1 mM Fe-NTA and 0.
View Article and Find Full Text PDFAs far as the authors know, no in-depth comparison has been made between the different performances of the solar photo-Fenton process for the removal of contaminants of emerging concern (CECs) as a function of pH. To this end, real WWTP secondary effluents were treated in continuous flow mode at pilot plant scale. The effect of hydraulic residence time (HRT), liquid depth and percentage of CEC removal on treatment capacity was studied.
View Article and Find Full Text PDFIn arid Mediterranean countries, such as Tunisia, wastewater often has high salinity, being an obstacle to the elimination of microcontaminants for the reuse of water in agriculture. In this paper, the photo-Fenton process in raceway pond reactors (RPRs) has been successfully applied to a simulated secondary effluent from a Tunisian urban wastewater treatment plant (WWTP), with high chloride load. A mixture of three contaminants of emerging concern (CECs) was used as model pollutants at 50 μg/L each (one antibiotic, sulfamethoxazole and two pesticides, pyrimicarb and imidacloprid).
View Article and Find Full Text PDF