Publications by authors named "Soren Kloverpris"

The metzincin metalloproteinase PAPP-A plays a key role in the regulation of insulin-like growth factor (IGF) signaling by specific cleavage of inhibitory IGF binding proteins (IGFBPs). Using single-particle cryo-electron microscopy (cryo-EM), we here report the structure of PAPP-A in complex with its endogenous inhibitor, stanniocalcin-2 (STC2), neither of which have been reported before. The highest resolution (3.

View Article and Find Full Text PDF

Objective: To reveal a possible relationship between two single nucleotide polymorphisms (SNPs) in PAPP-A-1224 (rs7020782) and 327 (rs12375498)-and the level and activity of PAPP-A in follicular fluid (FF) of human small antral follicles, and to analyze the intrafollicular hormone levels.

Design: Laboratory investigation.

Setting: University hospital.

View Article and Find Full Text PDF

Mutations in multiple genes of the growth hormone/IGF-I axis have been identified in syndromes marked by growth failure. However, no pathogenic human mutations have been reported in the six high-affinity IGF-binding proteins (IGFBPs) or their regulators, such as the metalloproteinase pregnancy-associated plasma protein A2 (PAPP-A2) that is hypothesized to increase IGF-I bioactivity by specific proteolytic cleavage of IGFBP-3 and -5. Multiple members of two unrelated families presented with progressive growth failure, moderate microcephaly, thin long bones, mildly decreased bone density and elevated circulating total IGF-I, IGFBP-3, and -5, acid labile subunit, and IGF-II concentrations.

View Article and Find Full Text PDF

Study Question: Is the proteolytic activity of pregnancy-associated plasma protein-A (PAPP-A) regulated by the stanniocalcins (STC1 and STC2) during human follicle maturation?

Summary Answer: The STCs and PAPP-A show similar expression by immunohistochemistry in developing follicles, and regulation of PAPP-A proteolytic activity is suggested by the identification of inhibited protein complexes between PAPP-A and STC1 or STC2 in human follicular fluid (FF).

What Is Known Already: The insulin-like growth factor (IGF)-regulating proteinase PAPP-A is secreted by the granulosa cells of estrogen-dominant follicles and is involved in follicle growth. STC1 and STC2 have recently been identified as novel PAPP-A inhibitors, and their expression in non-human mammalian ovaries has previously been observed.

View Article and Find Full Text PDF

Osteopontin (OPN) is a multifunctional integrin-binding protein present in several tissues and body fluids. OPN is a substrate for the enzyme transglutaminase 2 (TG2), which catalyzes inter- and intramolecular cross-linking affecting the biological activity of the protein. Polymerization of OPN by intermolecular cross-linking has mostly been studied using relatively high TG2 concentrations, whereas the effect of lower concentrations of TG2 has remained unexplored.

View Article and Find Full Text PDF

Objective: To evaluate follicular fluid (FF) levels of pregnancy-associated plasma protein A (PAPP-A) in relation to levels of intrafollicular hormones. Furthermore, immunostaining of human follicles of varying diameters was studied for PAPP-A, antimüllerian hormone (AMH), and aromatase, and the biological activity of PAPP-A in FF was evaluated.

Design: Laboratory investigation.

View Article and Find Full Text PDF

Stanniocalcin-1 (STC1) is a disulfide-bound homodimeric glycoprotein, first identified as a hypocalcemic hormone important for maintaining calcium homeostasis in teleost fish. STC1 was later found to be widely expressed in mammals, although it is not believed to function in systemic calcium regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking.

View Article and Find Full Text PDF

Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A).

View Article and Find Full Text PDF

Osteopontin (OPN) is a highly posttranslationally modified protein present in several tissues where it is implicated in numerous physiological processes. OPN primarily exerts its functions through interaction with integrins via the Arg-Gly-Asp and Ser-Val-Val-Tyr-Gly-Leu-Arg sequences located in the N-terminal part of the protein. OPN can be polymerized by the cross-linking enzyme transglutaminase 2 (TG2), and polymerization has been shown to enhance the biological activity of OPN.

View Article and Find Full Text PDF

The plasma concentration of the placentally derived proMBP (proform of eosinophil major basic protein) increases in pregnancy, and three different complexes containing proMBP have been isolated from pregnancy plasma and serum: a 2:2 complex with the metalloproteinase, PAPP-A (pregnancy-associated plasma protein-A), a 2:2 complex with AGT (angiotensinogen) and a 2:2:2 complex with AGT and complement C3dg. In the present study we show that during human pregnancy, all of the circulating proMBP exists in covalent complexes, bound to either PAPP-A or AGT. We also show that the proMBP-AGT complex constitutes the major fraction of circulating HMW (high-molecular weight) AGT in late pregnancy, and that this complex is able to further associate with complement C3 derivatives post-sampling.

View Article and Find Full Text PDF

The metzincin metalloproteinase pregnancy-associated plasma protein-A (PAPP-A, pappalysin-1) promotes cell growth by proteolytic cleavage of insulin-like growth factor-binding proteins 4 and 5, causing the release of bound insulin-like growth factors. PAPP-A binds an unknown cell-surface heparan sulfate proteoglycan, suggesting that it controls insulin-like growth factor signaling spatially. In human pregnancy, the majority of PAPP-A circulates as a disulfide-bonded complex with its inhibitor, the proform of eosinophil major basic protein (proMBP).

View Article and Find Full Text PDF

The highly basic eosinophil major basic protein (MBP), present in the crystalloid core of eosinophil leukocyte granules, has both cytotoxic and cytostimulatory properties and is directly implicated in a number of diseases. The crystal structure of MBP resembles that of the C-type lectin (CTL) superfamily, and recent data showed that MBP binds heparan sulfate glycosaminoglycan (GAG), with the CTL ligand-binding region as the binding site. MBP is synthesized as a proform (pro-MBP) containing an acidic propiece believed to neutralize the basic MBP domain.

View Article and Find Full Text PDF