Background: The occurrence and frequency of plant-pollinator interactions are acknowledged to be a function of multiple factors, including the spatio-temporal distribution of species. The study of pollination specialization by examining network properties and more recently incorporating predictors of pairwise interactions is emerging as a useful framework, yet integrated datasets combining network structure, habitat disturbance, and phylogenetic information are still scarce.
Results: We found that plant-pollinator interactions in a grassland ecosystem in the foothills of the Rocky Mountains are not randomly distributed and that high levels of reciprocal specialization are generated by biological constraints, such as floral symmetry, pollinator size and pollinator sociality, because these traits lead to morphological or phenological mismatching between interacting species.
Increased human land use has resulted in the increased homogenization of biodiversity between sites, yet we lack sufficient indicators to predict which species decline and the consequence of their potential loss on ecosystem services. We used comparative phylogenetic analysis to (1) characterize how increasing conversion of forest and grasslands to grazing pasturelands changes plant diversity and composition; (2) examine how changes in land use relate to declines in functional trait diversity; and (3) specifically investigate how these changes in plant composition affect the prevalence of zygomorphy and the possible consequences that these changes may have on pollinator functional groups. As predicted, we found that the conversion to grazing pasturelands negatively impacted species richness and phylogenetic composition.
View Article and Find Full Text PDF