Publications by authors named "Soraya Soubhi Smaili"

Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, such as mitochondrial dynamics, calcium homeostasis, autophagy and lipid metabolism. Notably, dysfunctions in these contact sites are closely related to neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. However, details about the role of endoplasmic reticulum-mitochondria contact sites in neurodegenerative diseases remain unknown.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by mutations in the huntingtin gene (mHtt), causing an unstable repeat of the CAG trinucleotide, leading to abnormal long repeats of polyglutamine (poly-Q) in the N-terminal region of the huntingtin, which form abnormal conformations and aggregates. Alterations in Ca signaling are involved in HD models and the accumulation of mutated huntingtin interferes with Ca homeostasis. Lysosomes are intracellular Ca storages that participate in endocytic and lysosomal degradation processes, including autophagy.

View Article and Find Full Text PDF

Gender-bias in COVID-19 severity has been suggested by clinical data. Experimental data in cell and animal models have demonstrated the role of sex hormones, particularly estrogens, in viral infections such as in COVID-19. SARS-CoV-2 uses ACE2 as a receptor to recognize host cells, and the protease TMPRSS2 for priming the Spike protein, facilitating virus entry into cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent aging-associated neurodegenerative disease, with a higher incidence in women than men. There is evidence that sex hormone replacement therapy, particularly estrogen, reduces memory loss in menopausal women. Neurofibrillary tangles are associated with tau protein aggregation, a characteristic of AD and other tauopathies.

View Article and Find Full Text PDF

Mitochondria-associated ER membranes (MAMs) are formed by close and specific components in the contact sites between the endoplasmic reticulum (ER) and mitochondria, which participate in several cell functions, including lipid metabolism, autophagy, and Ca signaling. Particularly, the presence of α-synuclein (α-syn) in MAMs was previously demonstrated, indicating a physical interaction among some proteins in this region and a potential involvement in cell dysfunctions. MAMs alterations are associated with neurodegenerative diseases such as Parkinson's disease (PD) and contribute to the pathogenesis features.

View Article and Find Full Text PDF

The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol.

View Article and Find Full Text PDF

The pharmacological modulation of autophagy is considered a promising neuroprotective strategy. While it has been postulated that lithium regulates this cellular process, the age-related effects have not been fully elucidated. Here, we evaluated lithium-mediated neuroprotective effects in young and aged striatum.

View Article and Find Full Text PDF

The COVID-19 has originated from Wuhan, China, in December 2019 and has been affecting the public health system, society, and economy in an unheard-of manner. There is no specific treatment or vaccine available for COVID-19. Previous data showed that men are more affected than women by COVID-19, then we hypothesized whether sex hormones could be protecting the female organism against the infection.

View Article and Find Full Text PDF

Objective: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERβ) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability.

Methods: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy.

View Article and Find Full Text PDF

Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and continuously changing microenvironment, suggesting a novel therapeutic approach for dietary manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-restriction/sorafenib.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium (Ca) is crucial for cell maintenance and plays a key role in neurotransmission, affecting communication between neurons, glial cells, and local blood flow.
  • When there are pathological conditions, Ca homeostasis is disrupted, leading to increased cytoplasmic Ca levels that activate harmful enzymes and contribute to neurodegenerative diseases.
  • The review discusses how intracellular Ca regulation involves interactions between endoplasmic reticulum, mitochondria, and lysosomes, and highlights the importance of Ca signaling-related proteins in autophagy and the progression of neurodegenerative diseases.
View Article and Find Full Text PDF

The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less.

View Article and Find Full Text PDF

Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research.

View Article and Find Full Text PDF

We previously proposed that high expression of FAM129A can be used as a thyroid carcinoma biomarker in preoperative diagnostic exams of thyroid nodules. Here, we identify that FAM129A expression is increased under nutrient and growth factor depletion in a normal thyroid cell line (PCCL3), overlapping with increased expression of autophagy-related protein and inhibition of AKT/mTOR/p70S6K. Supplementation of insulin, TSH and serum to the medium was able to reduce the expression of both FAM129A and autophagy-related protein and reestablish the AKT/mTOR/p70S6K axis.

View Article and Find Full Text PDF

Aging is a multifactorial process associated with functional deficits, and the brain is more prone to developing chronic degenerative diseases such as Parkinson's disease. Several groups have tried to correlate the age-related ultrastructural alterations to the neurodegeneration process using in vivo pharmacological models, but due to the limitations of the animal models, particularly in aged animals, the results are difficult to interpret. In this work, we investigated neurodegeneration induced by rotenone, as a pharmacological model of Parkinson's disease, in both young and aged Wistar rats.

View Article and Find Full Text PDF

Melanoma is a current worldwide problem, as its incidence is increasing. In the last years, several studies have shown that melanoma cells display high levels of autophagy, a self-degradative process that can promote survival leading to drug resistance. Consequently, autophagy regulation represents a challenge for cancer therapy.

View Article and Find Full Text PDF

Regeneration of injured skeletal muscles is affected by fibrosis, which can be improved by the administration of angiotensin II (AngII) receptor (ATR) blockers in normotensive animals. However, the role of ATR in skeletal muscle fibrosis in hypertensive organisms has not been investigated yet. The tibialis anterior (TA) muscle of spontaneously hypertensive (SHR) and Wistar rats (WR) were lacerated and a lentivector encoding a microRNA targeting AngII receptor type 1 (At1) (Lv-mirAT1a) or control (Lv-mirCTL) was injected.

View Article and Find Full Text PDF

α-Synuclein is the major component of neuronal cytoplasmic aggregates called Lewy bodies, the main pathological hallmark of Parkinson disease. Although neurons are the predominant cells expressing α-synuclein in the brain, recent studies have demonstrated that primary astrocytes in culture also express α-synuclein and regulate α-synuclein trafficking. Astrocytes have a neuroprotective role in several detrimental brain conditions; we therefore analyzed the effects of the overexpression of wild-type α-synuclein and its A30P and A53T mutants on autophagy and apoptosis.

View Article and Find Full Text PDF

Objective: To evaluate the phytochemical composition of hydroethanolic extracts from powdered aerial parts of Turnera diffusa Willd (Turneraceae; T. diffusa), as well as its toxicity in astrocytes.

Methods: Chemical analyses of hydroethanolic extract from powdered aerial parts ofT.

View Article and Find Full Text PDF

The p53 protein, a transcription factor with many gene targets, can also trigger apoptosis in the cytoplasm. The disruption of cell homeostasis, such as Ca(2+) signaling and mitochondrial respiration, contributes to the loss of viability and ultimately leads to cell death. However, the link between Ca(2+) signaling and p53 signaling remains unclear.

View Article and Find Full Text PDF

Purpose: γ-rays (IR) cause an increase in intracellular calcium [Ca(2+)], alters contractility and triggers apoptosis via the activation of protein kinase C in intestinal guinea pig smooth muscle cells. The present study investigated the role of the mitochondria in these processes and characterized proteins involved in IR-induced apoptosis.

Materials And Methods: Intestinal smooth muscle cells were exposed to 10-50 Gy from a (60)Co γ-source.

View Article and Find Full Text PDF

Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions.

View Article and Find Full Text PDF

Significance: Aging is a multi-factorial process that may be associated with several functional and structural deficits which can evolve into degenerative diseases. In this review, we present data that may depict an expanded view of molecular aging theories, beginning with the idea that reactive oxygen species (ROS) are the major effectors in this process. In addition, we have correlated the importance of autophagy as a neuroprotective mechanism and discussed a link between age-related molecules, Ca(2+) signaling, and oxidative stress.

View Article and Find Full Text PDF

It is well established that reduction of Ca2+ influx through L-type voltage-dependent Ca2+ channel (L-type VDCC), or increase of cytosolic cAMP concentration ([cAMP]c), inhibit contractile activity of smooth muscles in response to transmitters released from sympathetic nerves. Surprisingly, in this work we observed that simultaneous administration of L-type VDCC blocker (verapamil) and [cAMP]c enhancers (rolipram, IBMX and forskolin) potentiated purinergic contractions evoked by electrical field stimulation of rat vas deferens, instead of inhibiting them. These results, including its role in sympathetic transmission, can be considered as a "calcium paradox".

View Article and Find Full Text PDF