Publications by authors named "Soraya Salas-Silva"

Article Synopsis
  • Several types of human stem cells are utilized to create 3D liver organoids for research on liver disease and physiology, with a new method allowing primary human hepatocytes to be converted into bipotent progenitor cells for this purpose.
  • The study compared organoids derived from these progenitor cells to those from human liver cells and induced pluripotent stem cells, highlighting their molecular traits and potential for biomedical applications.
  • Findings indicate that the new bipotent progenitor-derived organoids show superior characteristics, better mimic liver disease conditions, and enhance sensitivity in drug toxicity testing compared to traditional liver cell-derived organoids.
View Article and Find Full Text PDF

Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) has been proved to protect the liver against α-naphthylisothiocyanate (ANIT)-induced cholestasis by acting as an antioxidant agent and redirecting toxic biliary solutes towards blood for urinary excretion. However, this may represent an additional potential risk for kidney integrity, which is already compromised by the cholestatic process itself (cholemic nephropathy). Therefore, in the present work, we studied the renal damage caused by ANIT-induced cholestasis and whether it is aggravated or, on the contrary, counteracted by HGF; if the latter holds, the involvement of its antioxidant properties will be ascertained.

View Article and Find Full Text PDF

The mechanism of damage of the biliary epithelium remains partially unexplored. However, recently many works have offered new evidence regarding the cholangiocytes' damage process, which is the main target in a broad spectrum of pathologies ranging from acute cholestasis, cholangiopathies to cholangiocarcinoma. This is encouraging since some works addressed this epithelium's relevance in health and disease until a few years ago.

View Article and Find Full Text PDF

Background: Type 2 Diabetes (T2D) is characterized by deregulation in carbohydrate and lipid metabolism, with a very high mortality rate. Glucose Transporter type 4 (GLUT4) plays a crucial role in T2D and represents a therapeutic target of interest. Tillandsia usneoides (T.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) and progression to non-alcoholic steatohepatitis (NASH) result as a consequence of diverse conditions, mainly unbalanced diets. Particularly, high-fat and cholesterol content, as well as carbohydrates, such as those commonly ingested in Western countries, frequently drive adverse metabolic alterations in the liver and promote NAFLD development. Lipid liver overload is also one of the main risk factors for initiation and progression of hepatocellular carcinoma (HCC), but detailed knowledge on the relevance of high nutritional cholesterol remains elusive.

View Article and Find Full Text PDF

Introduction And Objectives: It is well-known that signaling mediated by the hepatocyte growth factor (HGF) and its receptor c-Met in the liver is involved in the control of cellular redox status and oxidative stress, particularly through its ability to induce hepatoprotective gene expression by activating survival pathways in hepatocytes. It has been reported that HGF can regulate the expression of some members of the NADPH oxidase family in liver cells, particularly the catalytic subunits and p22. In the present work we were focused to characterize the mechanism of regulation of p22 by HGF and its receptor c-Met in primary mouse hepatocytes as a key determinant for cellular redox regulation.

View Article and Find Full Text PDF

Introduction And Objective: Non-alcoholic fatty liver disease remains as one of the main liver disorders worldwide. It is widely accepted that is the kind of lipid, rather than the amount deposited in the cells that determines cell damage. Cholesterol and saturated free fatty acids are deleterious lipids when accumulated but, in contrast, there are some valuable lipids that could counteract those with harmful properties.

View Article and Find Full Text PDF

Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT).

View Article and Find Full Text PDF

Among hepatic diseases, cholestatic ductopenic cholangiopathies are poorly studied, and they are rarely given the importance they deserve, especially considering their high incidence in clinical practice. Although cholestatic ductopenic cholangiopathies have different etiologies and pathogenesis, all have the same target (the cholangiocyte) and similar mechanistic basis of cell death. Cholestatic cholangiopathies are characterized, predominantly, by obstructive or functional damage in the biliary epithelium, resulting in an imbalance between proliferation and cholangiocellular death; this leads to the progressive disappearance of bile ducts, as has been shown to occur in primary sclerosing cholangitis, primary biliary cholangitis, low-phospholipid-associated cholelithiasis syndrome, cystic fibrosis-related liver disease, and drug-induced ductopenia, among other biliary disorders.

View Article and Find Full Text PDF