Publications by authors named "Soraya Leal-Bertioli"

Premise: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification.

View Article and Find Full Text PDF

Twenty-eight QTLs for LLS disease resistance were identified using an amphidiploid constructed mapping population, a favorable 530-kb chromosome segment derived from wild species contributes to the LLS resistance. Late leaf spot (LLS) is one of the major foliar diseases of peanut, causing serious yield loss and affecting the quality of kernel and forage. Some wild Arachis species possess higher resistance to LLS as compared with cultivated peanut; however, ploidy level differences restrict utilization of wild species.

View Article and Find Full Text PDF

Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut ( L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management.

View Article and Find Full Text PDF

Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut ( L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited.

View Article and Find Full Text PDF

Introduction: Fungal foliar diseases can severely affect the productivity of the peanut crop worldwide. Late leaf spot is the most frequent disease and a major problem of the crop in Brazil and many other tropical countries. Only partial resistance to fungal diseases has been found in cultivated peanut, but high resistances have been described on the secondary gene pool.

View Article and Find Full Text PDF

Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial and plastid functions rely on a balanced expression of proteins from both organellar and nuclear genomes, which can be disrupted in polyploid plants due to nuclear genome doubling.
  • Despite plastid genomes containing less than 1% of the nuclear gene count, they produce the majority of mRNA transcripts (69.9% to 82.3%), while mitochondrial genes contribute a smaller percentage (1.3% to 3.7%) yet maintain higher transcript levels per gene.
  • A study of transcript abundance in polyploid angiosperms reveals that even with cytonuclear imbalances at the RNA level, the coordination of gene expression between nuclear and organellar genomes remains intact, and polyploid plants can
View Article and Find Full Text PDF

Early (ELS) and late leaf spots (LLS) are two of the most destructive diseases in peanut (). They can cause severe plant defoliation and tremendous yield loss in the absence of fungicide applications. The high costs of fungicides, their potential for deleterious effects on the environment, the tightening of regulations, and the development of fungicide resistance call for additional management strategies to mitigate both diseases.

View Article and Find Full Text PDF

Lateral branch angle (LBA), or branch habit, is one of the most important agronomic traits in peanut. To date, the underlying molecular mechanisms of LBA have not been elucidated in peanut. To acquire the differentially expressed genes (DEGs) related to LBA, a TI population was constructed through the hybridization of a bunch-type peanut variety Tifrunner and prostrate-type Ipadur.

View Article and Find Full Text PDF

Crop wild species are increasingly important for crop improvement. Peanut ( L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base.

View Article and Find Full Text PDF

Telomeres are the physical ends of eukaryotic linear chromosomes that play critical roles in cell division, chromosome maintenance, and genome stability. In many plants, telomeres are comprised of TTTAGGG tandem repeat that is widely found in plants. We refer to this repeat as canonical plant telomeric repeat (CPTR).

View Article and Find Full Text PDF

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, GKP 10017, to the peanut crop () that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange.

View Article and Find Full Text PDF

Polyploidy is considered a driving force in plant evolution and domestication. Although in the genus Arachis, several diploid species were traditionally cultivated for their seeds, only the allotetraploid peanut Arachis hypogaea became the successful, widely spread legume crop. This suggests that polyploidy has given selective advantage for domestication of peanut.

View Article and Find Full Text PDF

Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared.

View Article and Find Full Text PDF

Peanut is a crop of the Kayabi tribe, inhabiting the Xingu Indigenous Park, Brazil. Morphological analysis of Xingu accessions showed variation exceeding that described for cultivated peanuts. This raised questions as to the origin of the Xingu accessions: are they derived from different species, or is their diversity a result of different evolutionary and selection processes? To answer these questions, cytogenetic and genotyping analyses were conducted.

View Article and Find Full Text PDF

Root-knot nematode is a very destructive pathogen, to which most peanut cultivars are highly susceptible. Strong resistance is present in the wild diploid peanut relatives. Previously, QTLs controlling nematode resistance were identified on chromosomes A02, A04 and A09 of Arachis stenosperma.

View Article and Find Full Text PDF

Crop improvements can help us to meet the challenge of feeding a population of 10 billion, but can we breed better varieties fast enough? Technologies such as genotyping, marker-assisted selection, high-throughput phenotyping, genome editing, genomic selection and de novo domestication could be galvanized by using speed breeding to enable plant breeders to keep pace with a changing environment and ever-increasing human population.

View Article and Find Full Text PDF

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination).

View Article and Find Full Text PDF

Thrips are major pests of peanut ( L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as (TSWV) and (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses.

View Article and Find Full Text PDF

Background: The Root-Knot Nematode (RKN), Meloidogyne arenaria, significantly reduces peanut grain quality and yield worldwide. Whilst the cultivated species has low levels of resistance to RKN and other pests and diseases, peanut wild relatives (Arachis spp.) show rich genetic diversity and harbor high levels of resistance to many pathogens and environmental constraints.

View Article and Find Full Text PDF

Premise Of The Study: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines.

View Article and Find Full Text PDF

The introduction of genes from wild species is a practice little adopted by breeders for the improvement of commercial crops, although it represents an excellent opportunity to enrich the genetic basis and create new cultivars. In peanut, this practice is being increasingly adopted. In this study we present results of introgression of wild alleles from the wild species Arachis duranensis and A.

View Article and Find Full Text PDF

Wild peanut relatives (Arachis spp.) are genetically diverse and were selected throughout evolution to a range of environments constituting, therefore, an important source of allelic diversity for abiotic stress tolerance. In particular, A.

View Article and Find Full Text PDF

Peanut, (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, (Krapovickas & W. C. Gregory, 1994) and (Krapovickas & W.

View Article and Find Full Text PDF