Publications by authors named "Soraya Ghayempour"

In this paper, a novel controlled release system based on Tragacanth nanofibers loaded with Peppermint oil is introduced by using a sonochemical/microemulsion method. The synthesized Tragacanth nanofibers showed a one-dimensional shape with 58 nm thickness and relatively smooth surface. Also, the loading of Peppermint oil into the synthesized nanofibers confirmed with FT-IR spectra.

View Article and Find Full Text PDF

Tragacanth is a nontoxic, biodegradable and biocompatible polymer applied as a nanostructure form in various fields such as biomedicine and food industry. Here, hydrogel Tragacanth nanofibers were fabricated using a modified microemulsion method. The effective parameters on the fabrication of nanofibers such as emulsifier type, stirrer type, processing time and concentrations of emulsifier, Tragacanth and aluminum chloride were studied and the conditions were optimized for high quality nanofibers.

View Article and Find Full Text PDF

Encapsulation is the best method to protect the plant extracts against volatility and instability in the presence of air, light, moisture and high temperatures. Nevertheless, application of encapsulated plant extracts on the textiles requires a low-temperature and high rate processing to avoid from breaking or destroying of capsules. The present paper represents application of nanocapsules prepared by ultrasound irradiation assisted W/O/W microemulsion method on the cotton fabric through UV curing method.

View Article and Find Full Text PDF

Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum.

View Article and Find Full Text PDF

Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature.

View Article and Find Full Text PDF

Herbal products have been widely used due to good antimicrobial, fragrance and medical properties. Essential oils and fragrances can be applied on the textile substrates as micro/nanocapsules to prolong lifetime by controlling the release rate. The present review tries to give a general overview on the application of micro/nanoencapsulated essential oils on the textile substrates to achieve aromatherapy textiles.

View Article and Find Full Text PDF

Tragacanth, a natural gum, has been used for centuries as emulsifier, thickener, stabilizer and binder in various fields such as food, medical and cosmetic industries. In this study, Tragacanth gum was used as a clean and natural reducing and stabilizing agent for preparation of urchin-like ZnO nanorod arrays at low-temperature using ultrasonic irradiation. The morphology and structure of urchin-like ZnO nanorod arrays was investigated by XRD, FESEM images, EDX, UV-vis and FT-IR spectroscopy.

View Article and Find Full Text PDF

Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated.

View Article and Find Full Text PDF