Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges.
View Article and Find Full Text PDFIntracellular lasers are emerging as powerful biosensors for multiplexed tracking and precision sensing of cells and their microenvironment. This sensing capacity is enabled by quantifying their narrow-linewidth emission spectra, which is presently challenging to do at high speeds. In this work, we demonstrate rapid snapshot hyperspectral imaging of intracellular lasers.
View Article and Find Full Text PDFBiointegrated intracellular microlasers have emerged as an attractive and versatile tool in biophotonics. Different inorganic semiconductor materials have been used for the fabrication of such biocompatible microlasers but often operate at visible wavelengths ill-suited for imaging through tissue. Here, we report on whispering gallery mode microdisk lasers made from a range of GaInP/AlGaInP multi-quantum well structures with compositions tailored to red-shifted excitation and emission.
View Article and Find Full Text PDFPolymer micro-/nanofibers, due to their low-cost and mechanical flexibility, are attractive building blocks for developing lightweight and flexible optical circuits. They are also versatile photonic materials for making various optical resonators and lasers, such as microrings, networks and random lasers. In particular, for random lasing architectures, the demonstrations to-date have mainly relied on fiber bundles whose properties are hard to tune post-fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light-matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals.
View Article and Find Full Text PDF