The alternative splicing (AS) of precursor messenger RNA (pre-mRNA) is a tightly regulated process through which introns are removed to leave the resulting exons in the mRNA appropriately aligned and ligated. The AS of pre-mRNA is a key mechanism for increasing the complexity of proteins encoded in the genome. In humans, more than 90% of genes undergo AS, underscoring the importance of this process in RNA biogenesis.
View Article and Find Full Text PDFHere, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization.
View Article and Find Full Text PDFThe first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5' splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3' splice site. The 5' and 3' splice site complexes are thought to be joined together by protein-protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40.
View Article and Find Full Text PDFThe tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing is a key mechanism to increase the number and complexity of proteins encoded by the genome. Evidence gathered in recent years has established that transcription and splicing are physically and functionally coupled and that this coupling may be an essential aspect of the regulation of splicing and alternative splicing. Recent advances in our understanding of transcription and of splicing regulation have uncovered the multiple interactions between components from both types of machinery.
View Article and Find Full Text PDF