Background: Tools for training and education of dental students can improve their ability to perform technical procedures such as dental implant placement. Shortage of training can negatively affect dental implantologists' performance during intraoperative procedures, resulting in lack of surgical precision and, consequently, inadequate implant placement, which may lead to unsuccessful implant supported restorations or other complications.
Objective: We designed and developed IMMPLANT a virtual reality educational tool to assist implant placement learning, which allows users to freely manipulate 3D dental models (e.
Feet input can support mid-air hand gestures for touchless medical image manipulation to prevent unintended activations, especially in sterile contexts. However, foot interaction has yet to be investigated in dental settings. In this paper, we conducted a mixed methods research study with medical dentistry professionals.
View Article and Find Full Text PDFAnalyzing medical volume datasets requires interactive visualization so that users can extract anatomo-physiological information in real-time. Conventional volume rendering systems rely on 2D input devices, such as mice and keyboards, which are known to hamper 3D analysis as users often struggle to obtain the desired orientation that is only achieved after several attempts. In this paper, we address which 3D analysis tools are better performed with 3D hand cursors operating on a touchless interface comparatively to a 2D input devices running on a conventional WIMP interface.
View Article and Find Full Text PDF