Publications by authors named "Soraia Fernandes"

Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The extracellular matrix (ECM) and its mechanobiology play a crucial role in tumor growth, making mechanotherapy a promising treatment for cancers by restoring ECM to a healthier state and aiding chemotherapy delivery.
  • Manipulating the ECM, especially using nanoparticles (NPs), shows potential for innovative cancer treatments, although dense ECMs can hinder NP effectiveness.
  • The review discusses the interaction between ECM and NPs, highlights recent advancements in mechanotherapy, and emphasizes the need for better understanding to enhance nanomedicine design for effective clinical applications.
View Article and Find Full Text PDF

mRNA therapeutics are set to revolutionize disease prevention and treatment, inspiring the development of platforms for safe and effective mRNA delivery. However, current mRNA delivery platforms face some challenges, including limited organ tropism for nonvaccine applications and inflammation induced by cationic nanoparticle components. Herein, we address these challenges through a versatile, noncationic nanoparticle platform whereby mRNA is assembled into a poly(ethylene glycol)-polyphenol network stabilized by metal ions.

View Article and Find Full Text PDF
Article Synopsis
  • T cells are crucial for fighting viral infections and cancer, so effective delivery systems for therapeutics targeting T cells are important, but challenging due to T cells' nonphagocytic behavior.
  • Researchers have found that natural glycogen nanoparticles (nanosugars) can engage T cells and release drugs without the need for complex receptor-targeting antibodies.
  • Among different nanoparticle types, smaller and positively charged glycogen nanoparticles (BG NPs) demonstrate superior internalization and drug release capabilities, proving effective in reactivating latent HIV-1 in T cells and transfecting mRNA.
View Article and Find Full Text PDF

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology.

View Article and Find Full Text PDF

The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy.

View Article and Find Full Text PDF

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular matrix (ECM) alterations that cause increased matrix deposition and stiffening are key features of adenocarcinomas, known as desmoplasia.
  • In our study of primary prostate cancer tissues from patients, we identified distinct structural changes in the ECM that disrupt normal glandular architecture.
  • By creating prostate cancer tumoroids (PCTs) from these tissues and manipulating TGF-β signaling, we discovered its critical role in ECM remodeling, initiating epithelial-to-mesenchymal transition (EMT), and facilitating tumor progression and spread.
View Article and Find Full Text PDF

Background: Ready-to-eat products, such as leafy greens, must be carefully controlled as they are directly consumed without any treatment to reduce the presence of potential pathogens. Food industries, especially those that process products with short shelf-life, demand rapid detection of foodborne pathogens such as Shiga Toxin-producing Escherichia coli (STEC). In this sense, molecular methods can fulfill both requirements of turnaround time and consumer safety.

View Article and Find Full Text PDF

A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.

View Article and Find Full Text PDF

Saxitoxin (STX), the most widely distributed neurotoxin in marine waters and emerging cyanotoxin of concern in freshwaters, causes paralytic shellfish poisoning in humans upon consumption of contaminated shellfish. To allow for the efficient monitoring of this biotoxin, it is of high importance to find high-affinity materials for its adsorption. Herein, we report the design and synthesis of a covalent organic polymer for the efficient adsorption of STX.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term.

View Article and Find Full Text PDF

Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems.

View Article and Find Full Text PDF

Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants.

View Article and Find Full Text PDF

Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes.

View Article and Find Full Text PDF

Herein, we demonstrate, for the first time, that covalent organic frameworks (COFs) can be efficient adsorbents for the screening of pharmaceuticals in real water samples, obtaining highly representative data on their occurrence and avoiding the cost of carrying high volume samples and tedious and costly clean-up and preconcentration steps. Of the 23 pharmaceuticals found present in the water samples from the Tagus river estuary using state-of-the-art solid-phase extraction (SPE), 22 were also detected (adsorbed and recovered for analysis) using a COF as the adsorbent material with adsorption efficiency of over 80% for nearly all compounds. In specific cases, acidification of the water samples was identified to lead to a dramatic loss of adsorption efficiency, underlining the effect of sample pre-treatment on the results.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs.

View Article and Find Full Text PDF

Microcystins (MCs), produced by sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF), TpBD-(NO), and TpBD-(NH), for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH), and the most hydrophilic one, MC-RR, with TpBD-(NO).

View Article and Find Full Text PDF

Nanoparticle-based magnetic hyperthermia is a well-known thermal therapy platform studied to treat solid tumors, but its use for monotherapy is limited due to incomplete tumor eradication at hyperthermia temperature (45 °C). It is often combined with chemotherapy for obtaining a more effective therapeutic outcome. Cubic-shaped cobalt ferrite nanoparticles (Co-Fe NCs) serve as magnetic hyperthermia agents and as a cytotoxic agent due to the known cobalt ion toxicity, allowing the achievement of both heat and cytotoxic effects from a single platform.

View Article and Find Full Text PDF

Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF) covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary.

View Article and Find Full Text PDF

Nanodrugs represent novel solutions to reshuffle repurposed drugs for cancer therapy. They might offer different therapeutic options by combining targeted drug delivery and imaging in unique platforms. Such nanomaterials are deemed to overcome the limitations of currently available treatments, ultimately improving patients' life quality.

View Article and Find Full Text PDF

The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind.

View Article and Find Full Text PDF

A novel procedure for the preparation of magnetic covalent organic frameworks (COFs) is reported. In situ functionalization of Fe3O4 with dopamine rapidly afforded amino-functionalized magnetic nanoparticles, which after decoration with a COF building block and subsequent COF growth gave access to magnetic composite mTpBD-Me2. The optimized synthesis conditions yielded crystalline and superparamagnetic material with no loss in surface area as compared to bulk COF.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed.

View Article and Find Full Text PDF

The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH.

View Article and Find Full Text PDF