Previous studies have reported elevated von Willebrand factor (VWF) levels in patients with sickle cell disease (SCD) and demonstrated a key role for the VWF-ADAMTS13 axis in the pathobiology of SCD vaso-occlusion. Although blood transfusion is the gold standard for stroke prevention in SCD, the biological mechanisms underpinning its improved efficacy compared with hydroxycarbamide are not fully understood. We hypothesized that the improved efficacy of blood transfusion might relate to differences in VWF-ADAMTS13 axis dysfunction.
View Article and Find Full Text PDFBackground: Severe COVID-19 is associated with marked endothelial cell (EC) activation that plays a key role in immunothrombosis and pulmonary microvascular occlusion. However, the biological mechanisms through which SARS-CoV-2 causes EC activation and damage remain poorly defined.
Objectives: We investigated EC activation in patients with acute COVID-19, and specifically focused on how proteins stored within Weibel-Palade bodies may impact key aspects of disease pathogenesis.
Background: Although most plasma FVIII (Factor VIII) circulates in complex with VWF (von Willebrand factor), a minority (3%-5%) circulates as free-FVIII, which is rapidly cleared. Consequently, 20% of total FVIII may be cleared as free-FVIII. Critically, the mechanisms of free-FVIII clearance remain poorly understood.
View Article and Find Full Text PDFThe plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood.
View Article and Find Full Text PDFBackground: Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance.
View Article and Find Full Text PDFBackground: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19.
View Article and Find Full Text PDFSemin Thromb Hemost
October 2021
Glycosylation is a key posttranslational modification, known to occur on more than half of all secreted proteins in man. As such, the role of N- and O-linked glycan structures in modulating various aspects of protein biology is an area of much research. Given their prevalence, it is perhaps unsurprising that variations in glycan structures have been demonstrated to play critical roles in modulating protein function and have been implicated in the pathophysiology of human diseases.
View Article and Find Full Text PDFBackground: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis.
Objectives: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis.
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance.
View Article and Find Full Text PDFBackground: Persistent fatigue, breathlessness, and reduced exercise tolerance have been reported following acute COVID-19 infection. Although immuno-thrombosis has been implicated in acute COVID-19 pathogenesis, the biological mechanisms underpinning long COVID remain unknown. We hypothesized that pulmonary microvascular immuno-thrombosis may be important in this context.
View Article and Find Full Text PDFEndothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation.
View Article and Find Full Text PDFABO blood group is associated with cardiovascular disease, with significantly lower risk in blood group O individuals. ABO(H) blood group determinants are expressed on different glycoproteins on platelet surfaces. In addition, ABO(H) structures are also present on VWF glycans.
View Article and Find Full Text PDFNumerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood.
View Article and Find Full Text PDFEssentials Von Willebrand Factor (VWF) is extensively glycosylated with serial studies demonstrating that these carbohydrate determinants play critical roles in regulating multiple aspects of VWF biology. Terminal sialic acid residues, expressed on both the N- and O-linked glycans of VWF, regulate VWF functional activity, susceptibility to proteolysis and plasma clearance in vivo. Quantitative and qualitative variations in VWF sialylation have been reported in patients with von Willebrand Disease, as well as in a number of other physiological and pathological states.
View Article and Find Full Text PDFThe mechanisms involved in regulating von Willebrand factor (VWF) clearance remain poorly understood. However recent studies have shown that macrophages play a critical role in regulating the half-life of VWF, and have identified specific lectin (including asialoglycoprotein, macrophage galactose-type lectin, Sigec-5 and C-type lectin domain family 4 member M) and scavenger receptors (including low-density lipoprotein receptor-related protein-1, scavenger receptor A1 and stabilin-2) that are involved in VWF clearance. Further studies will be required to determine the relative importance of these individual receptors with respect to physiological and pathological VWF clearance.
View Article and Find Full Text PDFPrevious studies have shown that loss of terminal sialic acid causes enhanced von Willebrand factor (VWF) clearance through the Ashwell-Morrell receptor (AMR). In this study, we investigated (1) the specific importance of - vs -linked sialic acid in protecting against VWF clearance and (2) whether additional receptors contribute to the reduced half-life of hyposialylated VWF. α2-3-linked sialic acid accounts for <20% of total sialic acid and is predominantly expressed on VWF -glycans.
View Article and Find Full Text PDFObjective: Previous studies have demonstrated a role for plasmin in regulating plasma von Willebrand factor (VWF) multimer composition. Moreover, emerging data have shown that plasmin-induced cleavage of VWF is of particular importance in specific pathological states. Interestingly, plasmin has been successfully used as an alternative to ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif) in a mouse model of thrombotic thrombocytopenic purpura.
View Article and Find Full Text PDFEnhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance.
View Article and Find Full Text PDF