Publications by authors named "Sora Q Kim"

Objective: Dietary protein restriction induces adaptive changes in food preference, increasing protein consumption over carbohydrates or fat. We investigated whether motivation and reward signaling underpin these preferences.

Methods And Results: In an operant task, protein-restricted male mice responded more for liquid protein rewards, but not carbohydrate, fat, or sweet rewards compared to non-restricted mice.

View Article and Find Full Text PDF

Dietary protein restriction induces adaptive changes in food preference, increasing protein consumption over carbohydrates or fat. We investigated whether motivation and reward signaling underpin these preferences. In an operant task, protein-restricted male mice responded more for liquid protein rewards, but not carbohydrate, fat, or sweet rewards compared to non-restricted mice.

View Article and Find Full Text PDF

Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient.

View Article and Find Full Text PDF

A glucagon-like peptide 1 receptor agonist (GLP-1 RA) semaglutide was approved for the treatment of obesity by the Food and Drug Administration. However, it can cause gastrointestinal events at high doses, limiting its broader use. Combining drugs with multiple mechanisms of action could enhance the weight-reducing effects while minimizing side effects.

View Article and Find Full Text PDF

Obesity is associated with a spectrum of nonalcoholic fatty liver disease (NAFLD) which is characterized by steatosis. Prolonged fat deposition aggravates liver dysfunctions leading to an advanced form of NAFLD such as steatohepatitis and cirrhosis. As liver function in the postprandial state is critical for macronutrient metabolism and energy homeostasis, we sought to determine the differences in protein complex profiles in lean and fatty livers in the postprandial state.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are a highly heterogeneous population of membranous particles that are secreted by almost all types of cells across different domains of life, including plants. In recent years, studies on plant-derived nanovesicles (PDNVs) showed that they could modulate metabolic reactions of the recipient cells, affecting (patho)physiology with health benefits in a trans-kingdom manner. In addition to its bioactivity, PDNV has advantages over conventional nanocarriers, making its application promising for therapeutics delivery.

View Article and Find Full Text PDF

Obesity caused by overnutrition is a major risk factor for non-alcoholic fatty liver disease (NAFLD). Several lipid intermediates such as fatty acids, glycerophospholipids and sphingolipids are implicated in NAFLD, but detailed characterization of lipids and their functional links to proteome and phosphoproteome remain to be elucidated. To characterize this complex molecular relationship, we used a multi-omics approach by conducting comparative proteomic, phoshoproteomic and lipidomic analyses of high fat (HFD) and low fat (LFD) diet fed mice livers.

View Article and Find Full Text PDF

Background/objectives: Acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyze the formation of cholesteryl ester (CE) from free cholesterol to regulate intracellular cholesterol homeostasis. Despite the well-documented role of ACATs in hypercholesterolemia and their emerging role in cancer and Alzheimer's disease, the role of ACATs in adipose lipid metabolism and obesity is poorly understood. Herein, we investigated the therapeutic potential of pharmacological inhibition of ACATs in obesity.

View Article and Find Full Text PDF

Obesity is often accompanied by metabolic changes in adipocytes that are closely associated with metabolic disease. Although high sugar consumption contributes to obesity, it may also directly affect adipocytes by increasing the rate of glycolysis and formation of the glycolytic by-product methylglyoxal (MG). MG is a reactive dicarbonyl that irreversibly damages proteins and other cellular components.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is highly abundant in the brain and confers protection against numerous neurological diseases, yet the fundamental mechanisms regulating the enrichment of DHA in the brain remain unknown. Here, we have discovered that a member of the long-chain acyl-CoA synthetase family, Acsl6, is required for the enrichment of DHA in the brain by generating an Acsl6-deficient mouse (Acsl6). Acsl6 is highly enriched in the brain and lipid profiling of Acsl6 tissues reveals consistent reductions in DHA-containing lipids in tissues highly abundant with Acsl6.

View Article and Find Full Text PDF