In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-β-l-Araf-(1→2)-β-l-Araf-(1→2)-β-l-Araf, l-Araf ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf -linked structure.
View Article and Find Full Text PDFNovel constrained Schiff-base ligands (inden) were developed based on the well-known salen ligands. Chromium complexes supported by the constrained inden ligands were successfully synthesized and used as catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO). The catalyst having -butyl (Bu) groups as substituents in combination with tetrabutylammonium bromide (TBAB) as a cocatalyst exhibited very high catalytic activity with a turnover frequency of up to 14800 h for the conversion of CO and propylene oxide into propylene carbonate exclusively at 100 °C and 300 psi of CO under solvent-free conditions.
View Article and Find Full Text PDFA new method for intramolecular oligosaccharide synthesis that is conceptually related to the general molecular clamp approach is introduced. Exceptional α-selectivity has been achieved in a majority of applications. Unlike other related concepts, this approach is based on the bisphenol A template, which allows one to connect multiple building blocks to perform templated oligosaccharide synthesis with complete stereoselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Extensin, the structural motif of plant extracellular matrix proteins, possesses a unique highly glycosylated, hydrophilic, and repeating Ser1Hyp4 pentapeptide unit, and has been proposed to include post-translational hydroxylation at proline residue and subsequent oligo-L-arabinosylations at all of the resultant hydroxyprolines as well as galactosylation at serine residue. Reported herein is the stereoselective synthesis of one of the highly glycosylated motifs, Ser(Galp1)-Hyp(Araf4)-Hyp(Araf4)-Hyp(Araf3)-Hyp(Araf1). The synthesis has been completed by the application of 2-(naphthyl)methylether-mediated intramolecular aglycon delivery to the stereoselective construction of the Ser(Galp1) and Hyp(Araf(n)) fragments as the key step, as well as Fmoc solid-phase peptide synthesis for the backbone pentapeptide.
View Article and Find Full Text PDFEnzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-l-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-l-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-l-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-l-arabinofuranose complex forms.
View Article and Find Full Text PDFSynthesis of p-nitrophenyl β-l-arabinofuranoside 1 as the substrate for novel β-l-arabinofuranosidase has been achieved by using both our inter- and intra-molecular glycosylation methodologies. Although the intermolecular glycosylation with l-Araf donors 3 and 4 resulted in a mixture of both α- and β-isomers, NAP ether-mediated IAD with 3 and 6 afforded the desired β-l-arabinofuranoside stereospecifically which was confirmed by NMR analysis on the (3)JH1-H2 coupling constant and (13)C chemical shift of C1. As expected, 1 has been revealed to be an efficient substrate in the biological study of a novel β-arabinofuranosidase such as HypBA1 with higher apparent affinity compared with other reported substrates.
View Article and Find Full Text PDFThe unique hydroxylproline (Hyp)-linked O-glycan modification is a common process in hydroxyproline-rich glycoproteins (HRGPs). The modification occurs through post-translational hydroxylation at 4-position of proline residues some of which are followed by O-glycosylation at the resulting Hyp which is also found in some secreted peptide hormones such as CLAVATA3 (CLV3) of Arabidopsis thaliana plants. An active mature CLV3 is a tridecapeptide linked to β-L-Araf-(1→2)-β-L-Araf-(1→2)-β-L-Araf at a Hyp residue in the center of the peptide sequence such as Arg-Thr-Val-Hyp-Ser-Gly-Hyp(L-Arafn)-Asp-Pro-Leu-His-His-His (n = 3).
View Article and Find Full Text PDFExtensins are plant-derived glycoproteins that are densely modified by oligo-arabinofuranosides linked to hydroxyproline residues. These glycoproteins have been implicated in many aspects of plant growth and development. Here, we describe the chemical synthesis of a tetrameric β(1-2)-linked arabinofuranoside that is capped by an α(1-3)-arabinofuranoside and a similar trisaccharide lacking the capping moiety.
View Article and Find Full Text PDFElaborating on previous studies by Lemieux for highly reactive "armed" bromides, we discovered that β-bromide of the superdisarmed (2-O-benzyl-3,4,6-tri-O-benzoyl) series can be directly obtained from the thioglycoside precursor. When this bromide is glycosidated, α-glycosides form exclusively; however, the yields of such transformations may be low due to the competing anomerization into α-bromide that is totally unreactive under the established reaction conditions.
View Article and Find Full Text PDFDiscrimination among S-thiazolinyl (STaz), S-benzoxazolyl (SBox), and S-ethyl anomeric leaving groups was achieved by fine-tuning activation conditions. Preferential glycosidation of a certain leaving group is determined neither by the strength of the activating reagent nor by the stability of the leaving group itself; instead, the type of activation plays the key role. The activation conditions established herein were applied to a sequential five-step synthesis of a hexasaccharide using six monosaccharide building blocks equipped with six different leaving groups.
View Article and Find Full Text PDFTraditional strategies for oligosaccharide synthesis often require extensive protecting and/or leaving group manipulations between each glycosylation step, thereby increasing the total number of synthetic steps while decreasing the efficiency of the synthesis. In contrast, expeditious strategies allow for the rapid chemical synthesis of complex carbohydrates by minimizing extraneous chemical manipulations. Oligosaccharide synthesis by selective activation of one leaving group over another is one such expeditious strategy.
View Article and Find Full Text PDFIt is reported that S-glycosyl O-methyl phenylcarbamothioates (SNea carbamothioates) have a fully orthogonal character in comparison to S-benzoxazolyl (SBox) glycosides. This complete orthogonality was revealed by performing competitive glycosylation experiments in the presence of various promoters. The results obtained indicate that SNea carbamothioates have a very similar reactivity profile to that of glycosyl thiocyanates, yet are significantly more stable and tolerate selected protecting group manipulations.
View Article and Find Full Text PDFComparative side-by-side glycosylation studies demonstrated that glycosyl thiocyanates, thioimidates, and thioglycosides provide comparative stereoselectivities in glycosylations. Very high α-stereoselectivity that was previously recorded for glycosyl thiocyanates can be achieved, but only if glycosyl acceptors are equipped with electron-withdrawing acyl substituents. Partially benzylated glycosyl acceptors provided relatively modest stereoselectivity, which was on a par with other common glycosyl donors.
View Article and Find Full Text PDFThis study clearly demonstrates that a multi-dentate metal coordination to the leaving group, along with O-5 and/or a protecting group at O-6, has a strong effect on the stereoselectivity of chemical glycosylation.
View Article and Find Full Text PDFThorough mechanistic studies of the alkylation pathway for the activation of glycosyl thioimidates have led to the development of the "thioimidate-only orthogonal strategy". Discrimination among S-thiazolinyl (STaz) and S-benzoxazolyl (SBox) anomeric leaving groups was achieved by fine-tuning of the activation conditions. Preferential glycosidation of a certain thioimidate is not simply determined by the strength of activating reagents; instead, the type of activation--direct vs indirect--comes to the fore and plays the key role.
View Article and Find Full Text PDFTetrahedron Lett
February 2008
We have identified silver tetrafluoroborate (AgBF(4)) as an excellent promoter for the activation of various glycosyl donors including glycosyl halides, trichloroacetimidates, thioimidates, etc. Easy handling and no requirement for azeotropic dehydration prior to application makes AgBF(4) especially beneficial in comparison to the commonly used AgOTf. Selective activation of glycosyl halides or thioimidates over thioglycosides or n-pentenyl glycosides, including simple sequential one-pot syntheses, has been also demonstrated.
View Article and Find Full Text PDFGreen pit viper (Trimeresurus albolabris) venom contains a variety of C-type lectin-like proteins (CLPs) causing platelet aggregation and consumptive thrombocytopenia in biting victims. Alboaggregin B (AL-B), a heterodimeric glycoprotein (Gp) Ib-binding protein, was purified from the venom, but there is no reported cDNA sequence and the platelet agglutination mechanism is poorly understood. The full-length AL-B beta clone was obtained from T.
View Article and Find Full Text PDFCrude proteins obtained by Mg/NP-40 extraction from Thai medicinal plants of the Curcuma species exhibited agglutination activity against rabbit erythrocytes. A crude extract from Salingalinthong, a Thai Curcuma specie, exhibited the strongest hemagglutinating activity, 2 x 10(-5) mg/ml.
View Article and Find Full Text PDF