Publications by authors named "Sophiya Siddiqui"

Background: Our earlier studies have shown that cell-free chromatin particles (cfChPs) that are released from dying cancer cells are readily internalised by bystander cells leading to activation of two hallmarks of cancer viz. genome instability and inflammation. These hallmarks could be down-regulated by deactivating cfChPs medium of oxygen radicals generated upon admixing small quantities of the nutraceuticals resveratrol (R) and copper (Cu).

View Article and Find Full Text PDF

The tumor microenvironment (TME) comprises various cell types, soluble factors, viz, metabolites or cytokines, which together play in promoting tumor metastasis. Tumor infiltrating immune cells play an important role against cancer, and metabolic switching in immune cells has been shown to affect activation, differentiation, and polarization from tumor suppressive into immune suppressive phenotypes. Macrophages represent one of the major immune infiltrates into TME.

View Article and Find Full Text PDF

We have earlier reported that cell-free chromatin (cfCh) particles that are released from dying cells, or those that circulate blood, can readily enter into healthy cells, illegitimately integrate into their genomes and induce dsDNA breaks, apoptosis and intense activation of inflammatory cytokines. We hypothesized that sepsis is caused by cfCh released from dying host cells following microbial infection leading to bystander host cell apoptosis and inflammation which are perpetuated in a vicious cycle with release of more cfCh from dying host cells. To test this hypothesis we used three cfCh inactivating agents namely 1) anti-histone antibody complexed nanoparticles which inactivate cfCh by binding to histones; 2) DNase I which inactivates cfCh by degrading its DNA component, and 3) a novel pro-oxidant combination of Resveratrol and Copper which, like DNase I, inactivates cfCh by degrading its DNA component.

View Article and Find Full Text PDF

The synthetic compound dendritic polyglycerol sulfate (dPGS) is a pleiotropic acting molecule but shows a high binding affinity to immunological active molecules as L-/P-selectin or complement proteins leading to well described anti-inflammatory properties in various mouse models. In order to make a comprehensive evaluation of the direct effect on the innate immune system, macrophage polarization is analyzed in the presence of dPGS on a phenotypic but also metabolic level. dPGS administered macrophages show a significant increase of MCP1 production paralleled by a reduction of IL-10 secretion.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long-chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en-route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo.

View Article and Find Full Text PDF

Radiation-induced bystander effect (RIBE) is a poorly understood phenomenon wherein non-targeted cells exhibit effects of radiation. We have reported that cell-free chromatin (cfCh) particles that are released from dying cells can integrate into genomes of surrounding healthy cells to induce DNA damage and inflammation. This raised the possibility that RIBE might be induced by cfCh released from irradiated dying cells.

View Article and Find Full Text PDF