Dravet syndrome is an intractable developmental and epileptic encephalopathy caused by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel Nav1.1. We showed previously that administration of the antisense oligonucleotide STK-001, also called ASO-22, generated using targeted augmentation of nuclear gene output technology to prevent inclusion of the nonsense-mediated decay, or poison, exon 20N in human SCN1A, increased productive Scn1a transcript and Nav1.
View Article and Find Full Text PDFDravet syndrome (DS) is an intractable developmental and epileptic encephalopathy caused largely by de novo variants in the gene, resulting in haploinsufficiency of the voltage-gated sodium channel α subunit Na1.1. Here, we used Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, nonproductive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model.
View Article and Find Full Text PDFWhile most monogenic diseases are caused by loss or reduction of protein function, the need for technologies that can selectively increase levels of protein in native tissues remains. Here we demonstrate that antisense-mediated modulation of pre-mRNA splicing can increase endogenous expression of full-length protein by preventing naturally occurring non-productive alternative splicing and promoting generation of productive mRNA. Bioinformatics analysis of RNA sequencing data identifies non-productive splicing events in 7,757 protein-coding human genes, of which 1,246 are disease-associated.
View Article and Find Full Text PDFMalaria remains one of the world's most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear.
View Article and Find Full Text PDFHIV vaginal transmission accounts for the majority of newly acquired heterosexual infections. However, the mechanism by which HIV spreads from the initial site of viral entry at the mucosal surface of the female genital tract to establish a systemic infection of lymphoid and peripheral tissues is not known. Once the virus exits the mucosa it rapidly spreads to all tissues, leading to CD4 T cell depletion and the establishment of a viral reservoir that cannot be eliminated with current treatments.
View Article and Find Full Text PDFThe process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca(2+) wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia.
View Article and Find Full Text PDF