Publications by authors named "Sophie Vontobel"

Ferrihydrite, a poorly crystalline Fe(III)-oxyhydroxide, is abundant in soils and is often found associated with organic matter. Model studies consistently show that in the presence of aqueous Fe(II), organic carbon (OC)-associated ferrihydrite undergoes less transformation than OC-free ferrihydrite. Yet, these findings contrast microbial reductive dissolution studies in which the OC promotes the reductive dissolution of Fe(III) in ferrihydrite and leads to the release of associated OC.

View Article and Find Full Text PDF

It is known that the association of soil organic matter (SOM) with iron minerals limits carbon mobilization and degradation in aerobic soils and sediments. However, the efficacy of iron mineral protection mechanisms under reducing soil conditions, where Fe(III)-bearing minerals may be used as terminal electron acceptors, is poorly understood. Here, we quantified the extent to which iron mineral protection inhibits mineralization of organic carbon in reduced soils by adding dissolved C-glucuronic acid, a Fe-ferrihydrite-C-glucuronic acid coprecipitate, or pure Fe-ferrihydrite to anoxic soil slurries.

View Article and Find Full Text PDF

In freshwater wetlands, redox interfaces characterized by circumneutral pH, steep gradients in O, and a continual supply of Fe(II) form ecological niches favorable to microaerophilic iron(II) oxidizing bacteria (FeOB) and the formation of flocs; associations of (a)biotic mineral phases, microorganisms, and (microbially-derived) organic matter. On the volcanic island of Iceland, wetlands are replenished with Fe-rich surface-, ground- and springwater. Combined with extensive drainage of lowland wetlands, which forms artificial redox gradients, accumulations of bright orange (a)biotically-derived Fe-rich flocs are common features of Icelandic wetlands.

View Article and Find Full Text PDF