Publications by authors named "Sophie Vibet"

n-3 long chain Polyunsaturated Fatty Acids (n-3 LCPUFA) have been shown to improve the efficacy of conventional chemotherapies used for breast cancer treatment. In addition to their reported ability to increase the chemosensitivity of cancer cells, we hypothesized that n-3 LCPUFA could induce a remodeling of the vascular network in mammary tumors. A contrast-enhanced ultrasound method was used to monitor the vascular architecture during docetaxel treatment of mammary tumors in rats fed either a control or an n-3 LCPUFA-enriched diet (docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA)).

View Article and Find Full Text PDF

New ultrasound parameters, potentially predictive of tumor response to chemotherapy, were sought after analyzing details of vascular architecture of mammary tumors during chemotherapy. Tumor-bearing rats were separated into untreated or docetaxel-treated group (6 mg/kg/week). Power Doppler Index and vascular contrast-enhanced ultrasound (CEUS) reference endpoints (Peak, area under the curve (AUC), blood flow) were evaluated at the beginning (W (0)), and after 2 and 6 weeks of docetaxel treatment (W (+2) and W (+6)).

View Article and Find Full Text PDF

The aim of this study was to determine how n-3 polyunsaturated fatty acid (PUFAs) counteracted tumor chemoresistance by restoring a functional vascularization. Rats with chemically induced mammary tumors were divided into two nutritional groups: a control group and a group fed with an n-3 PUFA-enriched diet. Both groups were treated with docetaxel.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, a lipid of marine origin) has been found to enhance the activity of several anticancer drugs through an oxidative mechanism. To examine the relation between chemosensitization by DHA and tumor cells antioxidant status, we used two breast cancer cell lines: MDA-MB-231, in which DHA increases sensitivity to doxorubicin, and MCF-7, which does not respond to DHA. Under these conditions, reactive oxygen species (ROS) level increased on anthracycline treatment only in MDA-MB-231.

View Article and Find Full Text PDF

The present work investigates the relationship between cancer cell chemosensitivity and subcellular distribution, molecular interaction, and metabolism of an anticancer drug. To get insights into this relationship, we took advantage of the differential sensitivity of two breast cancer cell lines, MDA-MB-231 and MCF-7, to anthracyclines, along with the property of docosahexaenoic acid (DHA, 22:6n-3), to differentially enhance their cytotoxic activity. The fluorescent drug mitoxantrone (MTX) was used because of the possibility to study its subcellular accumulation by confocal spectral imaging (CSI).

View Article and Find Full Text PDF

Polyunsaturated fatty acids have been reported to enhance the cytotoxic activity of several anticancer drugs. In the present study, we observed that doxorubicin chemosensitization of breast cancer cell lines by docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid) was cell-line selective, affecting MDA-MB-231 and MCF-7 dox (a doxorubicin-resistant cell line) but not the parental MCF-7 cell line. DHA supplementation led to an increase in membrane phospholipid DHA level, but did not induce changes in intracellular [(14)C]doxorubicin accumulation.

View Article and Find Full Text PDF