Receptor-Interacting serine/threonine-Protein Kinase 1 (RIPK1) emerged as an important driver of inflammation and, consequently, inflammatory pathologies. The enzymatic activity of RIPK1 is known to indirectly promote inflammation by triggering cell death, in the form of apoptosis, necroptosis and pyroptosis. Small molecule Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors have therefore recently entered clinical trials for the treatment of a subset of inflammatory pathologies.
View Article and Find Full Text PDFMol Ther
September 2022
Self-amplifying RNA vaccines may induce equivalent or more potent immune responses at lower doses compared to non-replicating mRNA vaccines via amplified antigen expression. In this paper, we demonstrate that 1 μg of an LNP-formulated dual-antigen self-amplifying RNA vaccine (ZIP1642), encoding both the S-RBD and N antigen, elicits considerably higher neutralizing antibody titers against Wuhan-like Beta B.1.
View Article and Find Full Text PDFRetinal diseases leading to impaired vision and ultimately blindness are mainly characterized by ischemic and hypoxic stress. Targeting the retinal ρ-containing γ-aminobutyric acid type A receptors (ρ GABARs) and thereby decreasing the retinal neuronal activity has been proposed as a novel therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain.
View Article and Find Full Text PDF