Quorum sensing (QS) is a density-dependent mechanism allowing bacteria to synchronize their physiological activities, mediated by a wide range of signaling molecules including -acyl-homoserine lactones (AHLs). Production of AHL has been identified in various marine strains of Proteobacteria. However, the chemical diversity of these molecules still needs to be further explored.
View Article and Find Full Text PDFMutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla.
View Article and Find Full Text PDFThe interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals.
View Article and Find Full Text PDFMicroalgal-bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp.
View Article and Find Full Text PDFEstimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265-512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O.
View Article and Find Full Text PDFRuegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain.
View Article and Find Full Text PDFMaribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing.
View Article and Find Full Text PDFAlong the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage.
View Article and Find Full Text PDFIn this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O.
View Article and Find Full Text PDFThe marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri.
View Article and Find Full Text PDF