: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFPurpose: Glioblastoma (GBM) is the most common brain malignancy with median survival <2 years. Standard-of-care temozolomide has marginal efficacy in approximately 70% of patients due to MGMT expression. LP-184 is an acylfulvene-derived prodrug activated by the oxidoreductase PTGR1 that alkylates at N3-adenine, not reported to be repaired by MGMT.
View Article and Find Full Text PDFDNA methylation is a reversible process catalyzed by the ten-eleven translocation (TET) family of enzymes (TET1, TET2, TET3) that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Altered patterns of 5hmC and 5mC are widely reported in human cancers and loss of 5hmC correlates with poor prognosis. Understanding the mechanisms leading to 5hmC loss and its role in oncogenesis will advance the development of epigenetic-based therapeutics.
View Article and Find Full Text PDF