Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need.
View Article and Find Full Text PDFUnlabelled: is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of .
View Article and Find Full Text PDFV. harveyi is a well-known pathogen-inducing vibriosis, especially for shrimp, fish, and invertebrates. Its virulence is related to biofilm formation and this negatively impacts the aquaculture industry.
View Article and Find Full Text PDFThe genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in the environment. The involvement of the biofilm lifestyle in the virulence of pathogens of aquatic organisms remains to be investigated.
View Article and Find Full Text PDFPhthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities.
View Article and Find Full Text PDFPathogenic bacteria and their biofilms are involved in many human and animal diseases and are a major public health problem with, among other things, the development of antibiotic resistance. These biofilms are known to induce chronic infections for which classical treatments using antibiotic therapy are often ineffective. Sponges are sessile filter-feeding marine organisms known for their dynamic symbiotic partnerships with diverse microorganisms and their production of numerous metabolites of interest.
View Article and Find Full Text PDFNitrogen (N ) fixation, or diazotrophy, supports a large part of primary production in oceans. Culture-independent approaches highlighted the presence in abundance of marine non-cyanobacterial diazotrophs (NCD), but their ecophysiology remains elusive, mostly because of the low number of isolated NCD and because of the lack of available genetic tools for these isolates. Here, a dual genetic and functional approach allowed unveiling the ecophysiology of a marine NCD affiliated to the species Vibrio diazotrophicus.
View Article and Find Full Text PDFPhthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells.
View Article and Find Full Text PDFPseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process.
View Article and Find Full Text PDFProkaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology.
View Article and Find Full Text PDFBiofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development.
View Article and Find Full Text PDFPAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of H103 to Pf4 variant infection was investigated.
View Article and Find Full Text PDFhas controversial status due to its emerging role in nosocomial infections, while some strains with beneficial effects are used as probiotics and starter cultures in dairy industry. These bacteria can be found as resident or transient germs in the gut or on skin, where they are continually exposed to various eukaryotic molecules. In this context, the aim of our work was to evaluate the effect of the catecholamine stress hormones, epinephrine (Epi), and norepinephrine (NE) on some trains.
View Article and Find Full Text PDFMicrobial endocrinology has demonstrated for more than two decades, that eukaryotic substances (hormones, neurotransmitters, molecules of the immune system) can modulate the physiological behavior of bacteria. Among them, the hormones/neurotransmitters, epinephrine (Epi) and norepinephrine (NE), released in case of stress, physical effort or used in medical treatment, were shown to be able to modify biofilm formation in various bacterial species. In the present study, we have evaluated the effect of Epi on motility, adhesion, biofilm formation and virulence of Pseudomonas aeruginosa, a bacterium linked to many hospital-acquired infections, and responsible for chronic infection in immunocompromised patients including persons suffering from cystic fibrosis.
View Article and Find Full Text PDFBiofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by , but the underlying adaptive mechanisms still remain elusive.
View Article and Find Full Text PDFIn many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of -acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals.
View Article and Find Full Text PDFMarine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. can develop such biofilms on the inner surface of shells of the clam, leading to the formation of a brown conchiolin deposit in the form of a ring, hence the name of the disease: Brown Ring Disease. The virulence of is presumed to be related to its capacity to form biofilms, but the link has never been clearly established at the physiological or genetic level.
View Article and Find Full Text PDFBacterial biofilms constitute a critical problem in hospitals, especially in resuscitation units or for immunocompromised patients, since bacteria embedded in their own matrix are not only protected against antibiotics but also develop resistant variant strains. In the last decade, an original approach to prevent biofilm formation has consisted of studying the antibacterial potential of host communication molecules. Thus, some of these compounds have been identified for their ability to modify the biofilm formation of both Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDFWe have previously shown that the C-type Natriuretic Peptide (CNP), a peptide produced by lungs, is able to impact physiology. In the present work, the effect of CNP at different concentrations on biofilm formation was studied and the mechanisms of action of this human hormone on were deciphered. CNP was shown to inhibit dynamic biofilm formation in a dose-dependent manner without affecting the bacterial growth at any tested concentrations.
View Article and Find Full Text PDFVibrio tapetis is a marine bacterium causing Brown Ring Disease (BRD) in the Manila clam Ruditapes philippinarum. V. tapetis biofilm formation remains unexplored depite the fact that it might be linked to pathogenicity.
View Article and Find Full Text PDFBackground: Few studies have reported the species composition of bacterial communities in marine biofilms formed on natural or on man-made existing structures. In particular, the roles and surface specificities of primary colonizers are largely unknown for most surface types. The aim of this study was to obtain potentially pioneering bacterial strains with high forming-biofilm abilities from two kinds of marine biofilms, collected from two different surfaces of the French Atlantic coast: an intertidal mudflat which plays a central role in aquaculture and a carbon steel structure of a harbour, where biofilms may cause important damages.
View Article and Find Full Text PDFVibrio tapetis CECT4600 is a pathogenic Gram-negative bacterium causing the brown ring disease in the Manila clam Ruditapes philippinarum. This vibriosis is induced by bacterial attachment on the periostracal lamina, yielding a decalcification of the bivalve shell. As in many bacterial species, pathogenesis is likely related to biofilm formation.
View Article and Find Full Text PDFBiosynthesis of biosurfactant rhamnolipids by Pseudomonas aeruginosa depends on two hierarchical quorum sensing systems, LasRI and RhlRI, which synthesize and sense the signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3OC₁₂-HSL) and N-butyryl-L-homoserine lactone (C₄-HSL), respectively. The Pseudomonas Quinolone Signal (PQS) is a third cell-to-cell signal molecule connecting these two systems, and its precursor, 2-heptyl-4-quinolone (HHQ), also constitutes a signal. The chronology of the production of signal molecules and rhamnolipids was determined during growth in PPGAS medium.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2007
In the present work, we assessed the suitability of sodium and potassium physiologically present in sweat, as internal reference allowing to re-calculate the corresponding volume of sweat collected on a PharmChek Patch. A method using capillary electrophoresis with indirect ultra-violet detection was developed for the determination of sodium and potassium in sweat. The concentrations determined in specimens collected from 12 females and 10 males, using a home-made system composed of polypropylene copolymer bag, were 1039+/-89 mg/L and 711+/-45 mg/L for sodium, and 489+/-293 mg/L and 474+/-196 mg/L for potassium, respectively.
View Article and Find Full Text PDF