The type VI secretion system (T6SS) of Gram-negative bacteria inhibits competitor cells through contact-dependent translocation of toxic effector proteins. In Proteobacteria, the T6SS is anchored to the cell envelope through a megadalton-sized membrane complex (MC). However, the genomes of Bacteroidota with T6SSs appear to lack genes encoding homologs of canonical MC components.
View Article and Find Full Text PDFUnderstanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut.
View Article and Find Full Text PDFUnderstanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known.
View Article and Find Full Text PDFBacteria have evolved systems dedicated to interbacterial competition. Here we highlight defenses utilized by Gram-negative cells against type VI secretion system (T6SS)-wielding competitors, including physical barriers, genetically encoded antidotes, and stress responses. Further investigation of specific and general defenses will reveal the interbacterial selective pressures impacting bacterial survival in nature.
View Article and Find Full Text PDFPseudomonas aeruginosa exploits several types of motility behaviours to colonize diverse environments. One of these is swarming motility, a coordinated group movement on a semi-solid surface. This bacterium needs to express a functional flagellum and produce rhamnolipids to display this type of social motility.
View Article and Find Full Text PDF