We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap / measurements to greater than 100,000 /. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2024
Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography.
View Article and Find Full Text PDFWe illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap measurements to greater than 100,000 . For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation.
View Article and Find Full Text PDFAt the 33rd ASMS Sanibel Meeting, on Membrane Proteins and Their Complexes, a morning roundtable discussion was held discussing the current challenges facing the field of native mass spectrometry and approaches to expanding the field to nonexperts. This Commentary summarizes the discussion and current initiatives to address these challenges.
View Article and Find Full Text PDFThe complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses.
View Article and Find Full Text PDFOver half the proteins in the cytoplasm form homo or hetero-oligomeric structures. Experimentally determined structures are often considered in determining a protein's oligomeric state, but static structures miss the dynamic equilibrium between different quaternary forms. The problem is exacerbated in homo-oligomers, where the oligomeric states are challenging to characterize.
View Article and Find Full Text PDFUnderstanding the relationship between protein structure and experimental data is crucial for utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be performed at multiple laboratory frame SID collision energies.
View Article and Find Full Text PDFNative mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID.
View Article and Find Full Text PDFAquaporin-0 (AQP0) is a tetrameric membrane protein and the most abundant membrane protein in the eye lens. Interestingly, there is little to no cellular turnover once mature lens fiber cells are formed, and hence, age-related modifications accumulate with time. While bottom-up mass spectrometry-based approaches can provide identification of post-translational modifications, they cannot provide information on how these modifications coexist in a single chain or complex.
View Article and Find Full Text PDFNative mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology.
View Article and Find Full Text PDFNative mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies.
View Article and Find Full Text PDFA variety of techniques involving the use of mass spectrometry (MS) have been developed to obtain structural information on proteins and protein complexes. One example of these techniques, surface-induced dissociation (SID), has been used to study the oligomeric state and connectivity of protein complexes. Recently, we demonstrated that appearance energies (AE) could be extracted from SID experiments and that they correlate with structural features of specific protein-protein interfaces.
View Article and Find Full Text PDFCharacterizing protein-protein interactions, stoichiometries, and subunit connectivity is key to understanding how subunits assemble into biologically relevant, multisubunit protein complexes. Native mass spectrometry (nMS) has emerged as a powerful tool to study protein complexes due to its low sample consumption and tolerance for heterogeneity. In nMS, positive mode ionization is routinely used and charge reduction, through the addition of solution additives, is often used, as the resulting lower charge states are often considered more native-like.
View Article and Find Full Text PDFIron-sulfur (Fe-S) cluster biosynthesis involves the action of a variety of functionally distinct proteins, most of which are evolutionarily conserved. Mutations in these Fe-S scaffold and trafficking proteins can cause diseases such as multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalopathy. Herein, we investigate the effect of Ile67Asn substitution in the BOLA3 protein that results in the MMDS2 phenotype.
View Article and Find Full Text PDFTransmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models.
View Article and Find Full Text PDFIn the study of membrane proteins and antimicrobial peptides, nanodiscs have emerged as a valuable membrane mimetic to solubilze these molecules in a lipid bilayer. We present the structural characterization of nanodiscs using native mass spectrometry and surface-induced dissociation, which are powerful tools in structural biology.
View Article and Find Full Text PDFUltraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility.
View Article and Find Full Text PDFRecently, mass spectrometry (MS) has become a viable method for elucidation of protein structure. Surface-induced dissociation (SID), colliding multiply charged protein complexes or other ions with a surface, has been paired with native MS to provide useful structural information such as connectivity and topology for many different protein complexes. We recently showed that SID gives information not only on connectivity and topology but also on relative interface strengths.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
To fulfill their biological functions, proteins must interact with their specific binding partners and often function as large assemblies composed of multiple proteins or proteins plus other biomolecules. Structural characterization of these complexes, including identification of all binding partners, their relative binding affinities, and complex topology, is integral for understanding function. Understanding how proteins assemble and how subunits in a complex interact is a cornerstone of structural biology.
View Article and Find Full Text PDFProliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon.
View Article and Find Full Text PDFNative ion mobility mass spectrometry (MS) and surface induced dissociation (SID) are applied to study the integral membrane protein complexes AmtB and AqpZ. Fragments produced from SID are consistent with the solved structures of these complexes. SID is, therefore, a promising tool for characterization of membrane protein complexes.
View Article and Find Full Text PDFThis communication reports the identification of gas phase isomers in monolayer-protected silver clusters. Two different isomers of Ag11(SG)7(-) (SG-gulathione thiolate) with different drift times have been detected using combined electrospray ionization (ESI) and ion mobility (IM) mass spectrometry (MS). Surface induced dissociation (SID) of the 3(-) charge state of such clusters shows charge stripping to give the 1(-) charged ion with some sodium attachment, in addition to fragmentation.
View Article and Find Full Text PDFMass spectrometry has emerged as a useful tool in the study of proteins and protein complexes. It is of fundamental interest to explore how the structures of proteins and protein complexes are affected by the absence of solvent and how this alters with increasing time in the gas phase. Here we demonstrate that a range of protein and protein complexes can be confined within the Trap T-wave region of a modified Waters Synapt G2S instrument, including monomeric (β-lactoglobulin), dimeric (β-lactoglobulin and enolase), tetrameric (streptavidin, concanavalin A, and pyruvate kinase), and pentameric (C-reactive protein) complexes, ranging in size up to 237 kDa.
View Article and Find Full Text PDFTransmission electron microscopy, mass spectrometry, and drift tube ion mobility-mass spectrometry are used to study the assemblies formed by the metamorphic chemokine lymphotactin in the presence of a model pentameric glycosaminoglycan, fondaparinux. This combination of techniques delineates significant differences in the complexes observed for two forms of the full length protein as well as a truncated form, without the intrinsically disordered C-terminal tail, over a length scale from few nm to μm assemblies.
View Article and Find Full Text PDF