Publications by authors named "Sophie Poty"

Single-domain antibodies (sdAbs) demonstrate favorable pharmacokinetic profiles for molecular imaging applications. However, their renal excretion and retention are obstacles for applications in targeted radionuclide therapy (TRT). Using a click-chemistry-based pretargeting approach, we aimed to reduce kidney retention of a fibroblast activation protein α (FAP)-targeted sdAb, 4AH29, for Lu-TRT.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the most lethal gynecologic malignancy (5-y overall survival rate, 46%). OC is generally detected when it has already spread to the peritoneal cavity (peritoneal carcinomatosis). This study investigated whether gadolinium-based nanoparticles (Gd-NPs) increase the efficacy of targeted radionuclide therapy using [Lu]Lu-DOTA-trastuzumab (an antibody against human epidermal growth factor receptor 2).

View Article and Find Full Text PDF

Background: Radiolabeled-antibodies usually display non-specific liver accumulation that may impair image analysis and antibody biodistribution. Here, we investigated whether Fc silencing influenced antibody biodistribution. We compared recombinant Zr-labeled antibodies (human IgG1 against different targets) with wild-type Fc and with mutated Fc (LALAPG triple mutation to prevent binding to Fc gamma receptors; FcγR).

View Article and Find Full Text PDF

Introduction: The chemokine receptor CXCR4 has been shown to be over-expressed in multiple types of cancer and is usually associated with aggressive phenotypes and poor prognosis. Successfully targeting and imaging the expression level of this receptor in tumours could inform treatment selection and facilitate patient stratification.

Methods: Known conjugates of AMD3100 that are specific to CXCR4 have been radiolabelled with gallium-68 and evaluated in naïve and tumour-bearing mice.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted radionuclide therapy (TRT) is an alternative approach for treating metastatic tumors, offering lower side effects compared to conventional external beam radiotherapy (EBRT) by delivering continuous low doses of radiation.
  • The effectiveness of TRT and EBRT differs, with TRT needing adjustments to traditional models like the sigmoid curve to account for tissue repair times and additional biological factors such as bystander effects and immune response.
  • Researchers suggest that the dose rate in TRT significantly influences the balance between direct DNA damage and broader biological responses involving cellular communication and the immune system.
View Article and Find Full Text PDF
Article Synopsis
  • Antibody-based medicines are really important, with over 120 types approved or being looked at in the US and EU, especially after the COVID-19 pandemic.
  • Scientists are trying to find better ways to deliver these antibodies into the body so that they work better and are easier for patients to receive.
  • However, there are challenges in figuring out how antibodies get through different barriers in the body to reach their targets, and researchers are working on strategies to improve this for better treatments with fewer side effects.
View Article and Find Full Text PDF

Auger electron emitters (AEEs) are attractive tools in targeted radionuclide therapy to specifically irradiate tumour cells while sparing healthy tissues. However, because of their short range, AEEs need to be brought close to sensitive targets, particularly nuclear DNA, and to a lower extent, cell membrane. Therefore, radioimmunoconjugates (RIC) have been developed for specific tumour cell targeting and transportation to the nucleus.

View Article and Find Full Text PDF

: The evaluation of early treatment response is critical for patient prognosis and treatment planning. When the current methods rely on invasive protocols that evaluate the expression of DNA damage markers on patient biopsy samples, we aim to evaluate a non-invasive PET imaging approach to monitor the early expression of the phosphorylated histone γH2AX in the context of pancreatic cancer targeted radionuclide therapy. Pancreatic ductal adenocarcinoma has a poor patient prognosis due to the absence of curative treatment for patients with advanced disease.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles were developed as positron emission tomography (PET) and magnetic resonance imaging (MRI) bimodal imaging agents. These nanoparticles (NPs), with a specific nanoflower morphology, were first synthesized and simultaneously functionalized with 3,4-dihydroxy-l-phenylalanine (LDOPA) under continuous hydrothermal conditions. The resulting NPs exhibited a low hydrodynamic size of 90 ± 2 nm.

View Article and Find Full Text PDF

Introduction: Determination of the target-binding fraction (TBF) of radiopharmaceuticals using cell-based assays is prone to inconsistencies arising from several intrinsic and extrinsic factors. Here, we report a cell-free quantitative method of analysis to determine the TBF of radioligands.

Methods: Magnetic beads functionalized with Ni-NTA or streptavidin were incubated with 1 μg of histidine-tagged or biotinylated antigen of choice for 15 min, followed by incubating 1 ng of the radioligand for 30 min.

View Article and Find Full Text PDF

We describe the preparation of gold(i)-compounds that are amenable to efficient bioconjugation with monoclonal antibodies via activated ester or maleimide linkers. New Trastuzumab-gold conjugates were synthesized and fully characterized. These bioconjugates are significantly more cytotoxic (sub-micromolar range) to HER2-positive breast cancer cells than the gold complexes and Trastuzumab.

View Article and Find Full Text PDF

Purpose: Interest in targeted alpha-therapy has surged due to α-particles' high cytotoxicity. However, the widespread clinical use of this approach could be limited by on-/off-target toxicities. Here, we investigated the inverse electron-demand Diels-Alder ligation between an Ac-labeled tetrazine radioligand and a -cyclooctene-bearing anti-CA19.

View Article and Find Full Text PDF

With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.

View Article and Find Full Text PDF

The use of radioactive sources to deliver cytotoxic ionizing radiation to disease sites dates back to the early 20th century, with the discovery of radium and its physiologic effects. α-emitters are of particular interest in the field of clinical oncology for radiotherapy applications. The first part of this review explored the basic radiochemistry, high cell-killing potency, and availability of α-emitting radionuclides, together with hurdles such as radiolabeling methods and daughter redistribution.

View Article and Find Full Text PDF

Intact antibodies and their truncated counterparts (eg, Fab, scFv fragments) are generally exquisitely specific and selective vectors, enabling recognition of individual cancer-associated molecular phenotypes against a complex and dynamic biomolecular background. Complementary alignment of these advantages with unique properties of radionuclides is a defining paradigm in both radioimmunoimaging and radioimmunotherapy, which remain some of the most adept and promising tools for cancer diagnosis and treatment. This review discusses how translational potency can be maximized through rational selection of antibody-nuclide couples for radioimmunoimaging/therapy in preclinical models.

View Article and Find Full Text PDF

CXCR4 is a G protein-coupled receptor (GPCR), which is overexpressed in numerous diseases, particularly in multiple cancers. Therefore, this receptor represents a valuable target for imaging and therapeutic purposes. Among the different approaches, which were developed for CXCR4 imaging, a CXCR4 antagonist biscyclam system (AMD3100, also called Mozobil), currently used in the clinic for the mobilization of hematopoietic stem cells, was radiolabeled with different radiometals such as (62)Zn, (64)Cu, (67)Ga, or (99m)Tc.

View Article and Find Full Text PDF

In the past few years, gallium-68 has demonstrated significant potential as a radioisotope for positron emission tomography (PET), and the optimization of chelators for gallium coordination is a major goal in the development of radiopharmaceuticals. Methylaminotriazacyclononane trimethylphosphinate (MA-NOTMP), a new C-functionalized triazacyclononane derivative with phosphinate pendant arms, presents excellent coordination properties for (68) Ga (low ligand concentration, labelling at low pH even at room temperature). A "ready-to-be-grafted" bifunctional chelating agent (p-NCS-Bz-MA-NOTMP) was prepared to allow (68) Ga labelling of sensitive biological vectors.

View Article and Find Full Text PDF

CXCR4 is a target of growing interest for the development of new therapeutic drugs and imaging agents as its role in multiple disease states has been demonstrated. AMD3100, a CXCR4 chemokine receptor antagonist that is in current clinical use as a haematopoietic stem cell mobilising drug, has been widely studied for its anti-HIV properties, potential to inhibit metastatic spread of certain cancers and, more recently, its ability to chelate radiometals for nuclear imaging. In this study, AMD3100 is functionalised on the phenyl moiety to investigate the influence of the structural modification on the anti-HIV-1 properties and receptor affinity in competition with anti-CXCR4 monoclonal antibodies and the natural ligand for CXCR4, CXCL12.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrguuaa3ncu4pd5i4ndr6nm1tlcijlcb9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once