Publications by authors named "Sophie Penning"

Background: Elevated blood glucose (BG) concentrations (Hyperglycaemia) are a common complication in critically ill patients. Insulin therapy is commonly used to treat hyperglycaemia, but metabolic variability often results in poor BG control and low BG (hypoglycaemia).

Objective: This paper presents a model-based virtual trial method for glycaemic control protocol design, and evaluates its generalisability across different populations.

View Article and Find Full Text PDF

So far, among the different non-invasive neurostimulation methods, only transcutaneous supraorbital nerve stimulation (t-SNS) with the Cefaly (Cefaly Technology sprl, Herstal, Belgium) device has randomized controlled trial-based evidence for safety and efficacy and obtained American Food and Drug Administration approval for the prevention of episodic migraine. In a double-blinded, randomized, sham-controlled trial on 67 episodic migraine patients (mean pre-treatment migraine days/month: 6.9), the 50% responder rate after 3 months was significantly higher in the active group (38.

View Article and Find Full Text PDF

Objective: The goal of this research is to demonstrate that well-regulated glycemia is beneficial to patient outcome, regardless of how it is achieved.

Methods: This analysis used data from 1701 patients from 2, independent studies. Glycemic outcome was measured using cumulative time in band (cTIB), calculated for 3 glycemic bands and for threshold values of t = 0.

View Article and Find Full Text PDF

Introduction: Therapeutic hypothermia (TH) is often used to treat out-of-hospital cardiac arrest (OHCA) patients who also often simultaneously receive insulin for stress-induced hyperglycaemia. However, the impact of TH on systemic metabolism and insulin resistance in critical illness is unknown. This study analyses the impact of TH on metabolism, including the evolution of insulin sensitivity (SI) and its variability, in patients with coma after OHCA.

View Article and Find Full Text PDF

Objective: This research evaluates the impact of the achievement of an intermediate target glycemic band on the severity of organ failure and mortality.

Methods: Daily Sequential Organ Failure Assessment (SOFA) score and the cumulative time in a 4.0 to 7.

View Article and Find Full Text PDF

Glucose-insulin system models are commonly used for identifying insulin sensitivity. With physiological, 2-compartment insulin kinetics models, accurate kinetic parameter values are required for reliable estimates of insulin sensitivity. This study uses data from 6 published microdialysis studies to determine the most appropriate parameter values for the transcapillary diffusion rate (n(I)) and cellular insulin clearance rate (n(C)).

View Article and Find Full Text PDF

A model-based insulin sensitivity parameter (SI) is often used in glucose-insulin system models to define the glycaemic response to insulin. As a parameter identified from clinical data, insulin sensitivity can be affected by blood glucose (BG) sensor error and measurement timing error, which can subsequently impact analyses or glycaemic variability during control. This study assessed the impact of both measurement timing and BG sensor errors on identified values of SI and its hour-to-hour variability within a common type of glucose-insulin system model.

View Article and Find Full Text PDF

Accurate glycemic control (AGC) is difficult due to excessive hypoglycemia risk. Stochastic TARgeted (STAR) glycemic control forecasts changes in insulin sensitivity to calculate a range of glycemic outcomes for an insulin intervention, creating a risk framework to improve safety and performance. An improved, simplified STAR framework was developed to reduce light hypoglycemia and clinical effort, while improving nutrition rates and performance.

View Article and Find Full Text PDF

Background: Critically ill patients often present increased insulin resistance and stress-induced hyperglycemia. Tight glycemic control aims to reduce blood glucose (BG) levels and variability while ensuring safety from hypoglycemia. This paper presents the results of the second Belgian clinical trial using the customizable STAR framework in a target-to-range control approach.

View Article and Find Full Text PDF

Background: Effective tight glycemic control (TGC) can improve outcomes in critical care patients, but it is difficult to achieve consistently. Insulin sensitivity defines the metabolic balance between insulin concentration and insulin-mediated glucose disposal. Hence, variability of insulin sensitivity can cause variable glycemia.

View Article and Find Full Text PDF

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials.

View Article and Find Full Text PDF

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input.

View Article and Find Full Text PDF

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials.

View Article and Find Full Text PDF

Introduction: Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach directly accounting for intra- and inter- patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) < 4.0 mmol/L.

View Article and Find Full Text PDF

Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment.

View Article and Find Full Text PDF

Tight glycemic control (TGC) has shown benefits in ICU patients, but been difficult to achieve consistently due to inter- and intra- patient variability that requires more adaptive, patient-specific solutions. STAR (Stochastic TARgeted) is a flexible model-based TGC framework accounting for patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dL. This research describes the first clinical pilot trial of the STAR approach and the post-trial analysis of the models and methods that underpin the protocol.

View Article and Find Full Text PDF

Background: In-silico virtual patients and trials offer significant advantages in cost, time and safety for designing effective tight glycemic control (TGC) protocols. However, no such method has fully validated the independence of virtual patients (or resulting clinical trial predictions) from the data used to create them. This study uses matched cohorts from a TGC clinical trial to validate virtual patients and in-silico virtual trial models and methods.

View Article and Find Full Text PDF