In order to interpret the effects of melatonin ligands in rats, we need to determine their activity at the receptor subtype level in the corresponding species. Thus, the rat melatonin rMT(1) receptor was cloned using DNA fragments for exon 1 and 2 amplified from rat genomic DNA followed by screening of a rat genomic library for the full length exon sequences. The rat rMT(2) receptor subtype was cloned in a similar manner with the exception of exon 1 which was identified by screening a rat genomic library with exon 1 of the human hMT(2) receptor.
View Article and Find Full Text PDFThe recent finding that the hormone kisspeptin plays a pivotal role in the onset of puberty is one of the biggest discoveries in human reproductive biology in 30 years. Mutations in the receptor for kisspeptin cause humans and mice to fail to reach puberty and to be sterile. It is the first time since the identification of gonadotrophin-releasing hormone that a single gene is found to have such a dramatic effect on reproduction.
View Article and Find Full Text PDFTo investigate the photoperiodic entrainment of peripheral rhythms in ruminants, we studied the expression of clock genes in the liver in the highly seasonal Soay sheep. Animals were kept under long (LD 16:8) or short photoperiod (LD 8:16). Daily rhythms in locomotor activity were recorded, and blood concentrations of melatonin and cortisol were measured by RIA.
View Article and Find Full Text PDFWe have recently described a molecular gatekeeper of the hypothalamic-pituitary-gonadal axis with the observation that G protein-coupled receptor 54 (GPR54) is required in mice and men for the pubertal onset of pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion to occur. In the present study, we investigate the possible central mode of action of GPR54 and kisspeptin ligand. First, we show that GPR54 transcripts are colocalized with gonadotropin-releasing hormone (GnRH) neurons in the mouse hypothalamus, suggesting that kisspeptin, the GPR54 ligand, may act directly on these neurons.
View Article and Find Full Text PDFBackground: Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty.
Methods: We used complementary genetic approaches in humans and in mice.
Melatonin is produced nocturnally by the pineal gland and is a neurochemical representation of time. It regulates neuroendocrine target tissues through G-protein-coupled receptors, of which MT(1) is the predominant subtype. These receptors are transiently expressed in several fetal and neonatal tissues, suggesting distinct roles for melatonin in development and that specific developmental cues define time windows for melatonin sensitivity.
View Article and Find Full Text PDFThe 24-h expression of seven clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2, and CK1 epsilon ) was assayed by in situ hybridization in the suprachiasmatic nucleus (SCN) and the pars tuberalis (PT) of the pituitary gland, collected every 4 h throughout 24 h, from female Soay sheep kept under long (16-h light/8-h dark) or short (8-h light/16-h dark) photoperiods. Locomotor activity was diurnal, inversely related to melatonin secretion, and prolactin levels were increased under long days. All clock genes were expressed in the ovine SCN and PT.
View Article and Find Full Text PDFThe pars tuberalis (PT) region of the anterior pituitary plays a physiological role in seasonal animals. The primary signal transduction mechanism of the melatonin receptor in this tissue is an inhibition of cAMP signaling. However, nothing is known about the endocrine signals that activate cAMP synthesis in the cells of the PT, as previous studies relied on the pharmacological tool, forskolin, to stimulate cAMP synthesis.
View Article and Find Full Text PDF