During their lifecycle, many engineered nanoparticles (ENPs) undergo significant transformations that may modify their toxicity, behaviour, and fate in the environment. Therefore, understanding the possible environmentally relevant transformations that ENPs may undergo as a result of their surroundings is becoming increasingly important. This work considers industrially produced ceria (CeO) and focuses on a particle library consisting of seven zirconium-doped variants (CeZrO) where the Zr doping range is x = 0-1.
View Article and Find Full Text PDFThe potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials' own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media.
View Article and Find Full Text PDFThe large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e.
View Article and Find Full Text PDF