Unlabelled: Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells.
View Article and Find Full Text PDFThe role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis.
View Article and Find Full Text PDFJ Alzheimers Dis Parkinsonism
October 2017
Objective: Years of education are the most common proxy for measuring cognitive reserve (CR) when assessing the relationship between Alzheimer's disease (AD) neuropathology and cognition. However, years of education may be limited as a CR proxy given that it represents a specific timeframe in early life and is static. Studies suggest that measures of intellectual function provide a dynamic estimate of CR that is superior to years of education since it captures the effect of continued learning over time.
View Article and Find Full Text PDFWithin neuropsychology, the term dispersion refers to the degree of variation in performance between different cognitive domains for an individual. Previous studies have demonstrated that cognitively normal individuals with higher dispersion are at an increased risk for progressing to mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, we determined 1) whether increased dispersion in older adults was associated with amyloid plaques and neurofibrillary tangles (NFTs) and 2) whether increased cognitive dispersion accurately differentiated MCI and AD from non-cognitively impaired (NCI) individuals.
View Article and Find Full Text PDF