Background: Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency.
View Article and Find Full Text PDFClimate change (CC) is already impacting Arabica coffee cultivation in the intertropical zone. To deal with this situation, it is no longer possible to manage this crop using industrial agriculture techniques, which has been the main strategy implemented since the Green Revolution. Developing a more sustainable agriculture system that respects people and the environment is essential to guarantee future generations' access to natural resources.
View Article and Find Full Text PDFPhotoperiod length induces in temperate plants major changes in growth rates, morphology and metabolism with, for example, modifications in the partitioning of photosynthates to avoid starvation at the end of long nights. However, this has never been studied for a tropical perennial species adapted to grow in a natural photoperiod close to 12 h/12 h all year long. We grew Coffea arabica L.
View Article and Find Full Text PDFFew proteins have been characterized as abscisic acid transporters. Several of them are NRT1/PRT Family (NPF) transporters which have been characterized in yeast using reporter systems. Because several members of the NPF4 subfamily members were identified in yeast as ABA transporters, here, we screened for ABA transport activity the seven members of the NPF4 subfamily in Xenopus oocytes using cRNA injection and H-ABA accumulation.
View Article and Find Full Text PDFSomatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial-and-error approach. Using coffee as a model plant, we report here the first global analysis of metabolome and hormone dynamics aiming to unravel mechanisms regulating cell fate and totipotency.
View Article and Find Full Text PDFSince the 1990s, somatic embryogenesis (SE) has enabled the propagation of selected varieties, Arabica F1 hybrid and Robusta clones, originating from the two cultivated coffee species, and , respectively. This paper shows how mostly empirical research has led to successful industrial transfers launched in the 2000s in Latin America, Africa, and Asia. Coffee SE can be considered as a model for other woody perennial crops for the following reasons: (i) a high biological efficiency has been demonstrated for propagated varieties at all developmental stages, and (ii) somaclonal variation is understood and mastered thanks to intensive research combining molecular markers and field observations.
View Article and Find Full Text PDFThis study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our "just-in-time" analysis of time-series transcriptome data uncovered a temporal cascade of elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes.
View Article and Find Full Text PDFN-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with soil bacteria, rhizobia. The nodule functioning is still a poorly characterized step of the symbiotic interaction, as only a few of the genes induced in N-fixing nodules have been functionally characterized. We present here the characterization of a member of the nitrate transporter1/peptide transporter family, The phenotypic characterization carried out in independent LORE1 insertion lines indicates a positive role of LjNPF8.
View Article and Find Full Text PDFLiving organisms sense and respond to changes in nutrient availability to cope with diverse environmental conditions. Nitrate (NO3-) is the main source of nitrogen for plants and is a major component in fertilizer. Unraveling the molecular basis of nitrate sensing and regulation of nitrate uptake should enable the development of strategies to increase the efficiency of nitrogen use and maximize nitrate uptake by plants, which would aid in reducing nitrate pollution.
View Article and Find Full Text PDFDipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.
View Article and Find Full Text PDFMembers of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies.
View Article and Find Full Text PDFIn higher plants, soluble sugars are mainly present as sucrose, glucose, and fructose. Sugar allocation is based on both source-to-sink transport and intracellular transport between the different organelles and depends on actual plant requirements. Under abiotic stress conditions, such as nitrogen limitation, carbohydrates accumulate in plant cells.
View Article and Find Full Text PDFAbscisic acid (ABA) metabolism, perception, and transport form a triptych allowing higher plants to use ABA as a signaling molecule. The molecular bases of ABA metabolism are now well described and, over the past few years, several ABA receptors have been discovered. Although ABA transport has long been demonstrated in planta, the first breakthroughs in identifying plasma membrane-localized ABA transporters came in 2010, with the identification of two ATP-binding cassette (ABC) proteins.
View Article and Find Full Text PDF