Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the gene alters the extinction of spatial reference memory.
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors, in particular mGluR5, have been implicated in various forms of synaptic plasticity that are believed to underlie declarative memory. We observed that mGluR5 specifically activated a channel containing TRPC1, an isoform of the canonical family of transient receptor potential (TRPC) channels highly expressed in CA1-3 regions of the hippocampus. TRPC1 is able to form tetrameric complexes with TRPC4 and/or TRPC5 isoforms.
View Article and Find Full Text PDFTRP channels are involved in the control of a broad range of cellular functions such as cell proliferation and motility. We investigated the gating mechanism of TRPC1 channel and its role in U251 glioblastoma cells migration in response to chemotaxis by platelet-derived growth factor (PDGF). PDGF induced an influx of Ca that was partially inhibited after pretreatment of the cells with SKI-II, a specific inhibitor of sphingosine kinase producing sphingosine-1-P (S1P).
View Article and Find Full Text PDF